DUS Examination

19. Jan. 2021

DUS Examination

Contents:

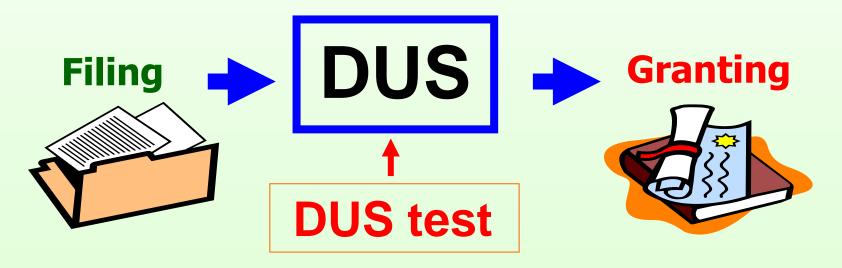
1. Distinctness

- consistent difference
- clear difference

2. Uniformity

- off-type approach
- standard deviation approach

3. Stability


Part 1: for Vegetatively propagated, Self-pollinated varieties Part 2: for Cross-pollinated varieties

UPOV principles

Examination of the Application

Article 12; 91 Act of the UPOV

Any decision to grant a breeder's right shall require an examination for compliance with the conditions under article 5 to 9.

UPOV principles

D: must be distinguishable from any other varieties

S: must be unchanged after repeated propagation

Next generation

Purpose of DUS test

Characteristics as the Basis for Examination of DUS TG/1/3: 2.4

- **1.** For any variety to be capable of protection *it must first be clearly defined*.
- Only after a variety has been defined <u>can it be finally examined for fulfillment of the DUS</u> <u>criteria</u> required for protection.
- 3. <u>a variety is defined by its characteristics</u> and that those characteristics are therefore the basis on which a variety can be examined for DUS.

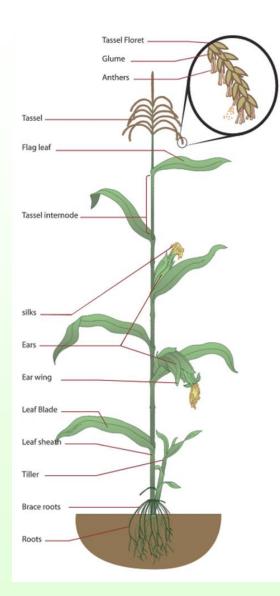
purpose of DUS test

- **1.** Definition of a variety using the characteristics
- **2. Examination of DUS**

Definition of a variety

Definition of a variety

Clarify the states of expression of the characteristics of the variety and make a "variety description" of the variety using its relevant characteristics.


Definition of a variety

How to define the variety

INTERNATIONAL UNION F	UPO FOR THE PROTEC	V) TION OF NEW V4	TG/2/7 ORIGINAL: Eng DATE: 2009-04-4 ARIETIES OF P	01	9-04- 2mal	01 stabelle/Tabla de c	aracleres	
						español	Example Varieties/ Exemples/ Beispielssorten/ Variedades ejemplo	Note/ Nota
	MAIZ UPOV Code: ZF		*		ng	Primera hoja: pigmentación antociánica de la vaina		
	Zea may	s I				ausente o muy debil	0674, Jubilee (SC)	1
	GUIDELI	INES				débil	MO17, Puma (SC)	3
	OR THE CONDU					media	F252, Gyöngymazsola (SC)	5
FORDISTIC	NCTNESS, UNIFO	RMITY AND STAB	aLITY			fuerte	F244	7
						muy fuerte		9
					m	Primera hoja: forma del ápice		
Alternative Names:*						puntiaguda		1
Botanical name English Zea mays L. Maize, Corn	French Mais	German Mais	Spenich Maiz		let	puntiaguda a redondeada	0674	2
The purpose of these guideline						redondeada	Empire (SC), F816	3
General Introduction (document guidance for the harmonized e particular, to identify appropri-	examination of distin ate characteristics fo	tness, uniformity and	stability (DUS) a	md, in		redondeada a espatulada	F259, Merkur (SC)	4
harmonized variety descriptions.			-			espatulada	EP1	5
ASSOCIATED DOCUMENTS These Test Guidelines should be		with the General Intro-	duction and its asso	sciated	der	Follaje: intensidad del color verde		
TGP documents.						claro	W182E	1
		medium	moyenne	mittel		medio	Empire (SC), W117	2
		dark	foncée	dunkel		oscuro	GSS 3287 (SC), W401	3

Maize: 41 characteristics

10. (+)	Tassel: anthocyanin coloration of glumes excluding base	Note
QN	absent or very weak	1
	weak	3
	medium	5
	strong	7
	very strong	9
14. (*)	Tassel: number of primary lateral branches	Note
QN	absent or very few	1

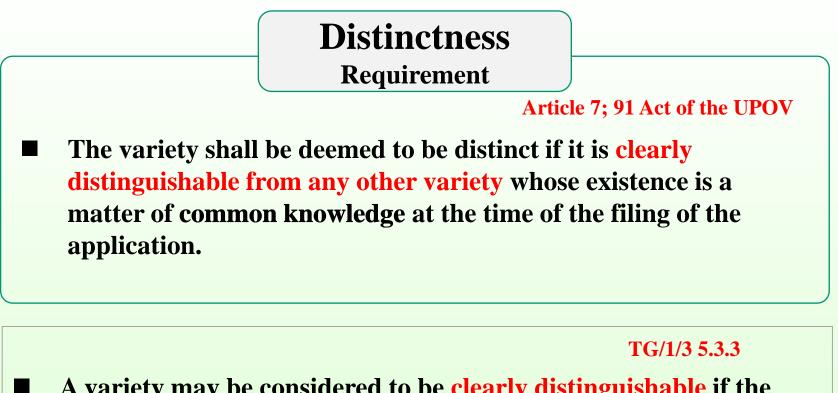
few	3
medium	5
many	7
very many	9

15. (+)	Ear: time of silk emergence	Note
QN	early	3
	medium	5
	late	7

Definition of a variety

Variety description

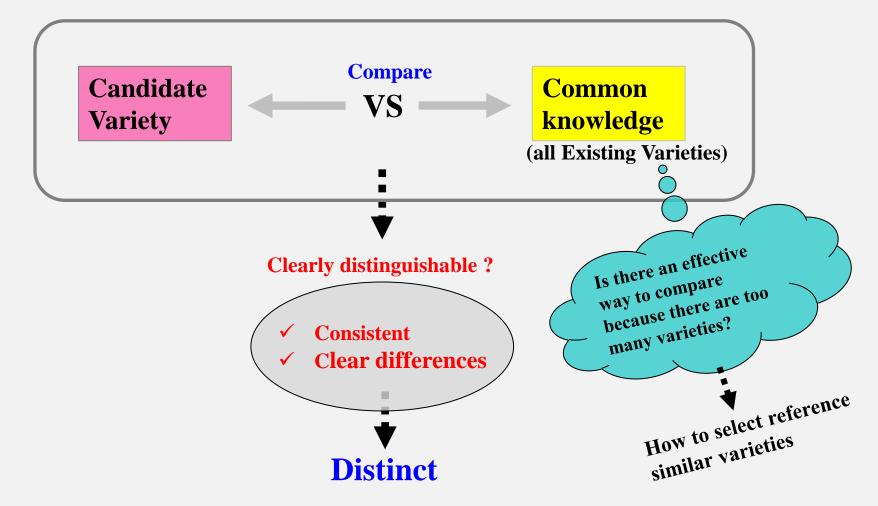
total 41 chars.


Char No.	Characteristics	Notes
1	First leaf: anthocyanin coloration of sheath	5
2	First leaf: shape of apex	3
3	Foliage: intensity of green color	2
4	Leaf: undulation of margin of blade	2
5	Leaf: angle between blade and stem	3
6	Leaf: curvature of blade	3
7	Stem: degree of zig-zag	2
8	Tassel: time of anthesis	4
	•••••	••

The variety description \rightarrow defined by the states of expression of the characteristics

PART 1:

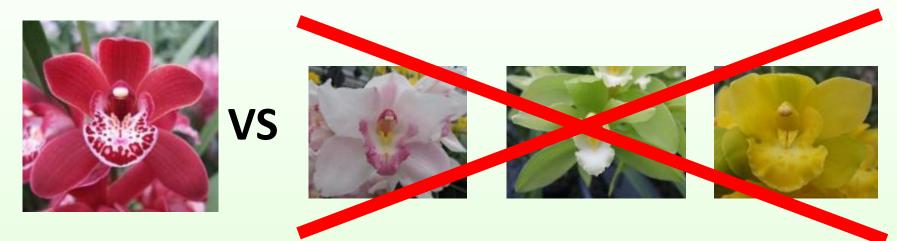
DUS Examination for Vegetatively propagated, Self-pollinated and Single-Cross Hybrid varieties


- consistent difference
- Clear difference

A variety may be considered to be clearly distinguishable if the difference in characteristics is:

- (a) consistent, and
- (b) clear.

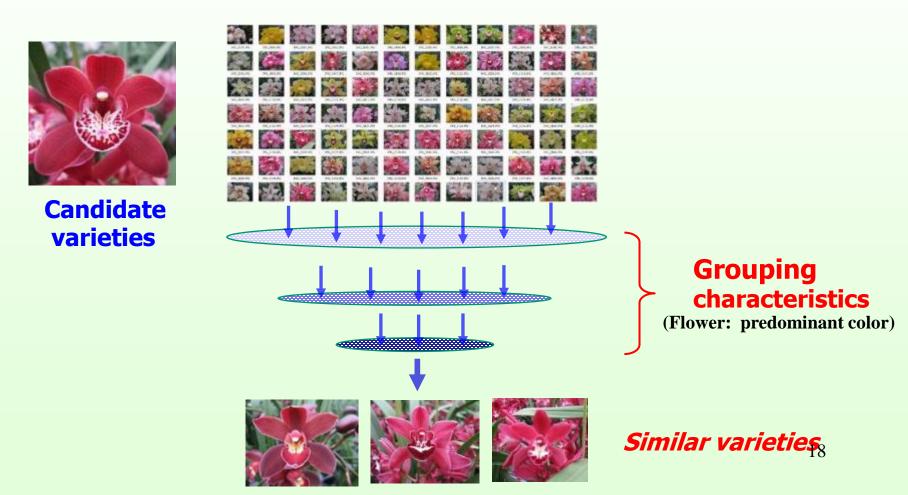
D: Clearly distinguishable


Selection of reference similar variety

TG/1/3: 5.3.1.1 "it is necessary to examine distinctness in relation to all varieties of common knowledge."

We need to compare to all existing varieties?

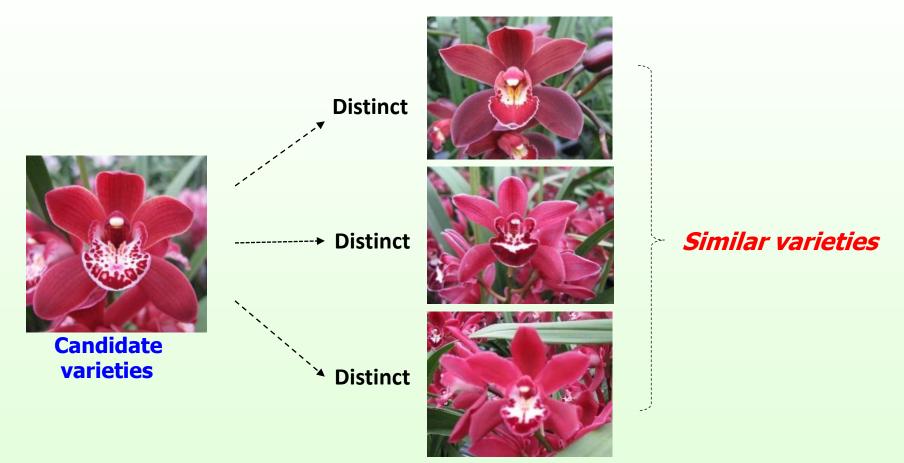
Where a candidate variety is sufficiently different from particular group of varieties,



No need to compare the candidate variety with different group of varieties

No need to compare candidate variety with different group of varieties

Selecting the similar varieties



No need to compare the candidate variety with different group of varieties

VS

the candidate variety is considered to be distinguished from all existing varieties

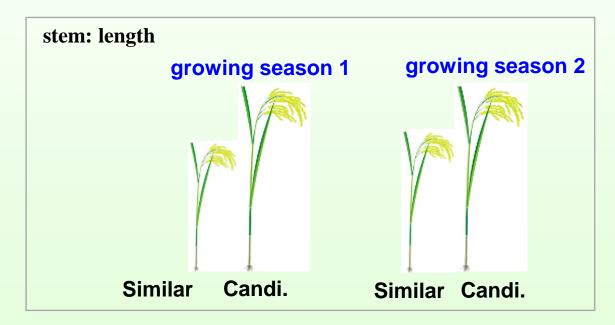
Grouping characteristics

Grouping characteristics: Cymbidium

- (a) Plant: size (char. 1)
- (b) Inflorescence: number of flowers (char. 20)
- (c) Peduncle: attitude (char. 24)
- (d) Flower: general impression of petals and sepals (char. 28)
- (e) Flower: length (char. 29)
- (f) Flower: width (char. 30)
- (g) Flowering time (char. 100)
- (h) Flower: predominant color (Technical Questionnaire 5.8)

Grouping characteristics

Grouping Characteristics


TGP/7 5.2

Function:

- A) to select varieties of common knowledge that can be excluded from the growing trial used for examination of distinctness; and
- B) to organize the growing trial so that similar varieties are grouped together.

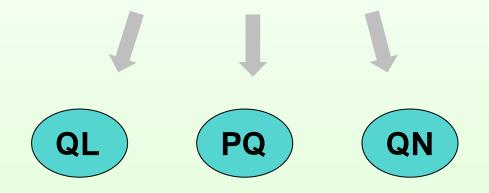
Consistent difference:

To ensure sufficient consistent is to examine the characteristics in at two independent growing cycles.

Consistent difference

Consistent difference

To ensure sufficient consistent is to examine the characteristics in at two independent growing cycles.


- ✓ If the growing conditions of the crop are controlled, such as in a greenhouse with regulated temperature and light, it may not be necessary to observe two growing cycles.
- ✓ The differences observed between varieties could be so clear that a second growing cycle may not be necessary.
- ✓ The individual Test Guidelines specify whether several independent growing cycles are required to show sufficient consistency

Consistent difference

Clear differences:

TG/1/3: 5.3.3.2

Determining whether a difference between two varieties is clear **depends on the type of expression of the characteristics**.

Distinctness: QL

Clear difference

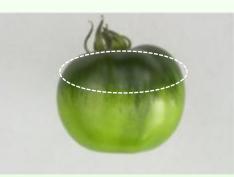
TG/1/3: 5.3.3.2.1

Visual observation

the difference between two varieties may be considered clear

- if one or more characteristics have expressions that **fall into two different states in the Test Guidelines**

✓ "Different states" can be considered to be Distinct


Distinctness: QL Clear difference

Different "states" can be Distinct --> note1 : 9

Fruit: green shoulder (before maturity)

Absent 1

Present 9

Peduncle: abscission layer

http://www.johnnyseeds.com

Absent 1

https://www.deruiterseeds.com

Present 9

Distinctness: QL

Clear difference

Different "states" can be Distinct --> note1 : 2

TG/219/1 Perilla				
13. (*)	VG	Leaf blade: color of <u>lower</u> side	Note	
QL	(a)	greenish	1	
		purplish	2	

purplish 2

TG/221/1 Antirrhinum			
15. (*) (+)		Flower: form	Note
QL	(c)	zygomorph	1
		actinomorph	2
		actinomorph	2

actinomorphy 2

zygomorphy 1

Distinctness: PQ

Clear difference

TG/1/3: 5.3.3.2.3

- Visual observation
- A different state in the Test Guidelines may not be sufficient to establish distinctness.

However, in certain circumstances, varieties described by the same state of expression may be clearly distinguishable.

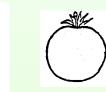
- ✓ difficult to define a general rule on the difference in Notes to establish Distinctness
- need to compare the state of expression directly side by side with observing many samples

Distinctness: PQ

Clear difference

PQ: clear difference

1.flattened

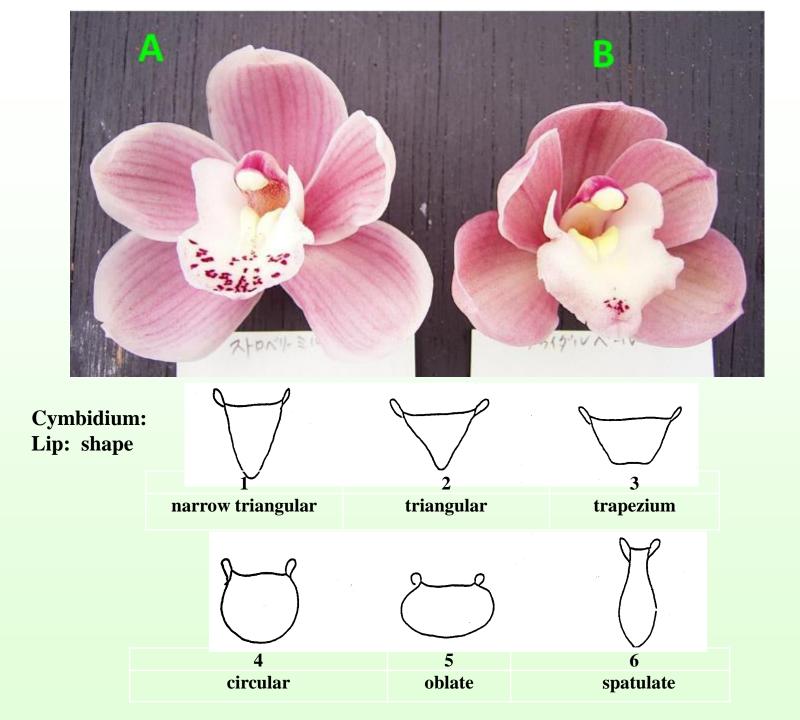


2.oblate

8.ovate

7.cordate

3.circular



4.oblong 5.cylindric 6.elliptic

10.pyriform 11.obcordate 9.obovate

- Transfer from measured value to note
- Two note rule

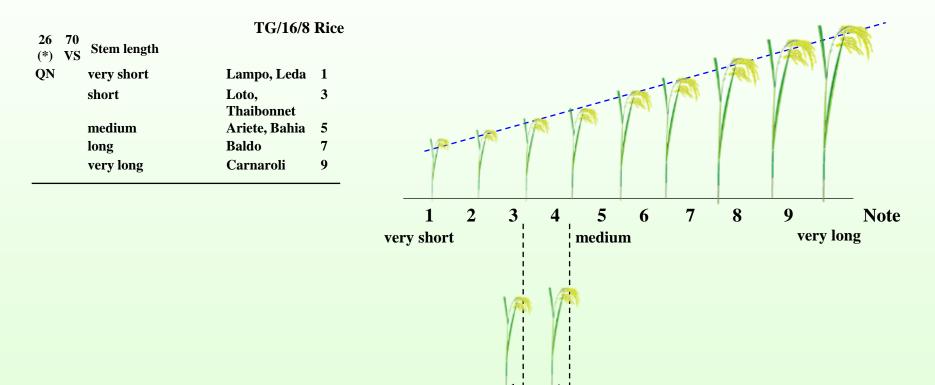
Distinctness: QN

QN

Clear difference

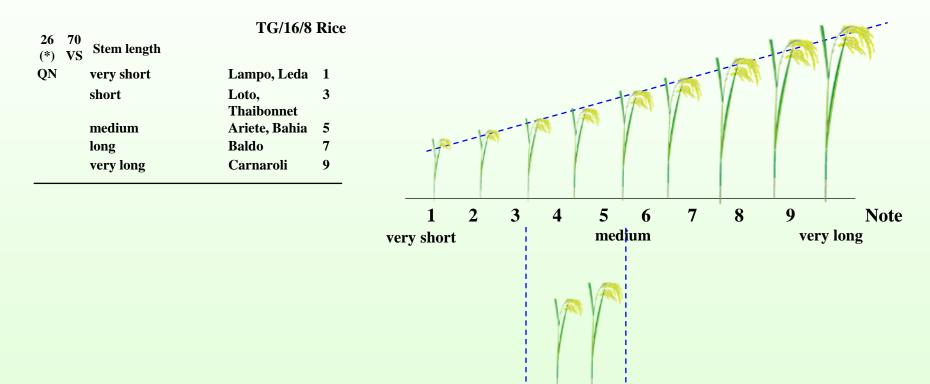
TG/1/3: 5.3.3.2.2

Visual observation / measurement


 <u>a difference of two Notes often represents a clear</u> difference, but that is not an absolute standard for assessment of distinctness. Depending on factors, such as the testing place, the year, environmental variation or range of expression in the variety collection, a clear difference may be more or less than two Notes.

Distinctness: QN

Clear difference


Two notes rule

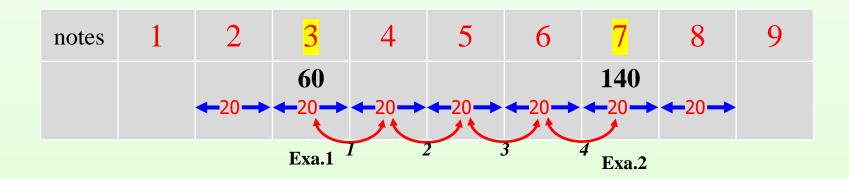
Note 3: 4 → may NOT be clear difference

Clear difference

Two notes rule

Note 3: 5 \rightarrow may be clear difference

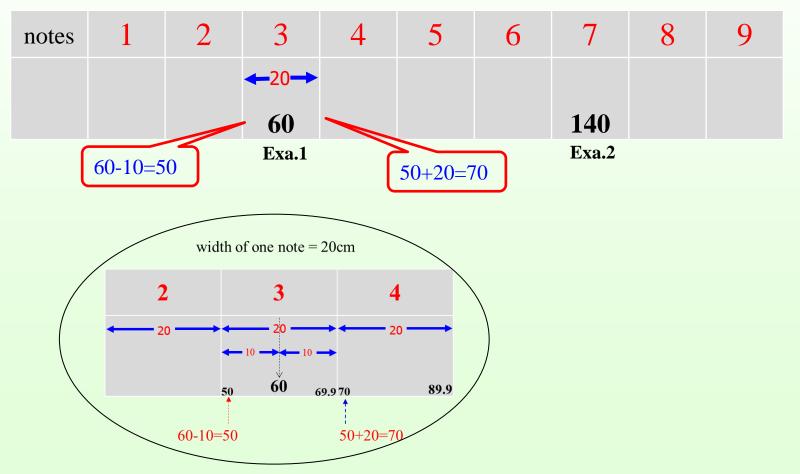
Clear difference


How to examine Distinctness in QN

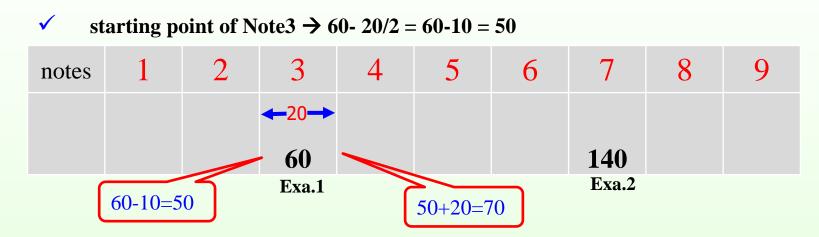
- ✓ How do we get a "Note" from measured value ?
- How do we evaluate the difference between candidate variety and similar varieties?

(examp	le) "Pl	ant: len	gth" (MS)
Varieties	length cm	Notes	Distinctness
Candidate	115	?	
Sim. 1	91	?	D or not D?
Sim. 2	98	?	D or not D?
Exa. 1	60	<mark>3</mark>	
Exa. 2	140	<mark>7</mark>	

Clear difference


- How do we get a "Note" from measured value ?
 - Step1: Making a Note Setting Table
 - ✓ put "60", "140" of Example varieties values into middle of Note3, Note7
 - ✓ width of one note \rightarrow (140-60) / (7-3) = 80/4 = 20cm

Clear difference


Step1: Making a Note Setting Table

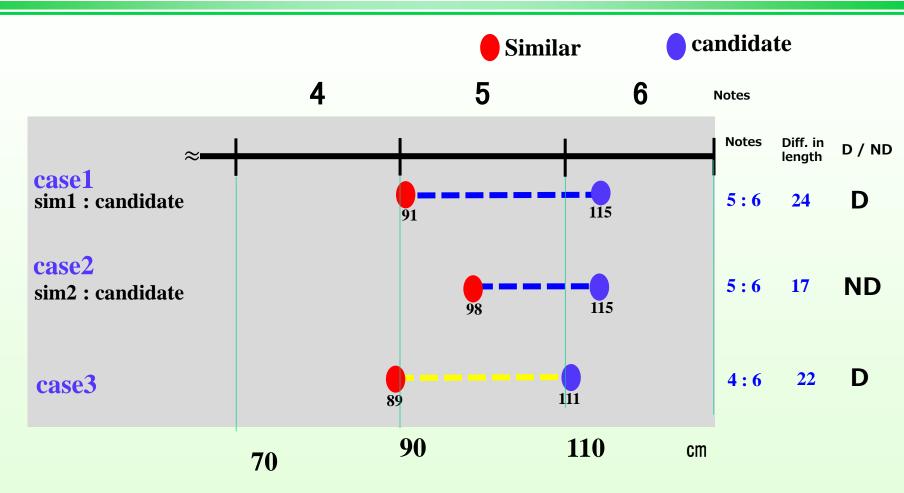
Clear difference

Step1: Making a Note Setting Table

[Note setting table]

notes	1	2	3	4	5	6	7	8	9
interval	~ 29.9	30 ~ 49.9	50 ~ 69.9	70 ~ 89.9	90 ~ 109.9	110 ~ 129.9	130 ~ 149.9	150 ~ 169.9	170 ~
States of Expressions			short		med.		long		

Clear difference


Step2: Convert measured value to Note using the NST

[Note setting table]

notes	1	2	3	4	5	6	7	8	9
interval	~ 29.9	30 ~ 49.9	50 ~ 69.9	70 ~ 89.9	90 ~ 109.9	110 ~ 129.9	130 ~ 149.9	150 ~ 169.9	170 ~
States of Expressions			short		med.		long		

(examp	ole) "P	lant: le	ngth" (MS)		
Varieties	length cm	Notes	Distinctness		
Candidate	115	6		·	Diff. in
Sim. 1	91	5	D or not D?	1 Note difference	length 24
Sim. 2	98	5	D or not D?	1 Note difference	17
Exa. 1	60	<mark>3</mark>			
Exa. 2	140	<mark>7</mark>			

Clear difference

A "Two note rule" means that there is a difference of more than width of one note. QN(MS) distinctness = " > width of one note

Clear difference

Transformation of measurements into Notes

JPOV nternational Union for the Protection of New Varieties of Plants	-
Fechnical Working Party on Automation and Computer Programs	TWC/35/12
Thirty-Fifth Session Buenos Aires, Argentina, November 14 to 17, 2017	Original: English Date: October 23, 2017
	Date: October 23, 2017
Buenos Aires, Argentina, November 14 to 17, 2017 SHORT EXPLANATION ON THE JAPANESE METHODS FOR ASSE	Date: October 23, 2017

1. The measured data for QN characteristics in DUS growing trial are transformed to numerical notes based on the assessment table. The assessment table are developed by the measurement data of respective example variety which are allocated in the specific notes, are precisely defined each range of notes. In case

Distinctness Examination

Clear difference

	characteristics	Assessment
QL	 discontinuous states absent / present	different states
PQ	more than one dimensionshape, color	A different state in the TGs may not be sufficient
QN	 continuous states length, width	two notes rule

Distinctness Examination

Assessment of Distinctness

	V=Visual observatio or M=Measurement		
Method of propagation of the variety	QL	PQ	QN
Vegetatively propagated, self-pollinated	Notes(VG)	Notes(VG) Side-by-side(VG)	Notes (VG/MG/MS) Side-by-side (VG) Statistics (MG/MS)
Cross-pollinated	Notes(VG) Statistics(VS*)	Notes(VG) Side-by-side(VG) Statistics(VS*)	Statistics ([MG]/MSVS) Side-by-side (VG) Notes (VG/MG/MS)
Hybrid - Single cross	Notes(VG)	Notes(VG) Side-by-side(VG)	Notes (VG/MG/MS) Side-by-side (VG) Statistics (MG/MS)

• The most common approach are listed first.

- Features of propagation of the variety
- Off-type approach
- Standard Deviation approach

Uniformity Requirement

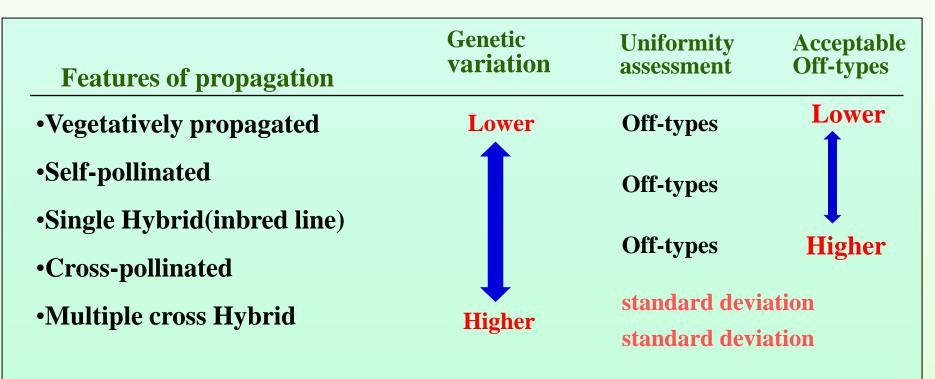
Article 8; 91 Act of the UPOV

The variety shall be deemed to be uniform if, subject to the variation that may be expected from the particular features of its propagation, it is sufficiently uniform in its relevant characteristics.

 The level of uniformity required for the variety depends on the propagation method of the varieties.

Assessment of Uniformity

Assessment of Uniformity


TGP/10/1 2.5.2

Method of propagation of the variety	QL	PQ	QN
Vegetatively propagated	Off-types	Off-types	Off-types (Visual observation) Standard deviations (measurement)
Self-pollinated	Off-types	Off-types	Off-types (Visual observation) Standard deviations (measurement)
Cross-pollinated	Off-types	Off-types	Standard deviations
Single hybrid (inbred parent lines)	Off-types	Off-types	Off-types (Visual observation) Standard deviations (measurement)
Other hybrid	according to the ty	pe of hybrid	

- The most common approaches are listed first.

Methods for Uniformity assessment

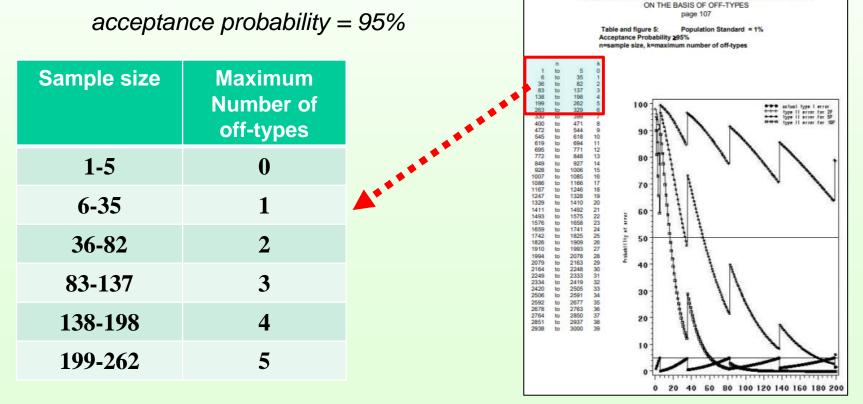
- 1. Off-types approach
- 2. Standard deviation approach

Off-types approach

Low level of genetic variation

Where all the plants of a variety are very similar, for vegetatively propagate and self-pollinated varieties, Uniformity is assessed by <u>the number of off-types</u>

How many off-types can we accept?


How many off-types can we accept?

population standard = 1% and

Number of off-types allowed depending on sample size

TGP/8 p.107

8: THE METHOD OF UNIFORMITY ASSESSMENT

THE METHOD OF UNIFORMITY ASSESSMENT ON THE BASIS OF OFF-TYPES TGP/8 p.95

TGP/8/4 PART II

species and genera	Assessment of uniformity
soya bean	a population standard (P.S.) of 0.5% with an acceptance probability(A.P) of at least 95% should be applied. In the case of a sample size of 300 plants, the maximum number of off-types allowed would be 4.
tomato	P.S. of 1% and A.P. of at least 95% should be applied. In the case of a sample size of 20 plants, 1 off-type is allowed.
chrysanthemum	P.S. of 1% and A.P. of at least 95 % should be applied. In the case of a sample size of 20 plants, 1 off-type is allowed.
apple	P.S. of 1% and A.P. of at least 95% should be applied.In the case of a sample size of 5 plants, no off-types are allowed.In the case of a sample size of 10 plants, 1 off-type is allowed.
banana	P.S. of 1% and A.P. of at least 95% should be applied. In the case of a sample size of 15 plants, 1 off-type is allowed.
tulip	P.S. of 1% and A.P. of at least 95 % should be applied. In the case of a sample size of 25 plants, 1 off-type is allowed.
sugarcane	P.S. of 1% and A.P. of at least 95% should be applied.In the case of a sample size of 6 culms 1 off-type is allowed.In the case of a sample size of 24 culms, 1 off-type is allowed.

Population standard

(Acceptable Number of off-types)

✓ maximum percentage of off-types that would be permitted if all individuals of the variety could be examined. (1, 2, 3%...)

Acceptance probability

✓ Minimum probability of accepting as uniform a variety with the population standard of off-types. (95%)

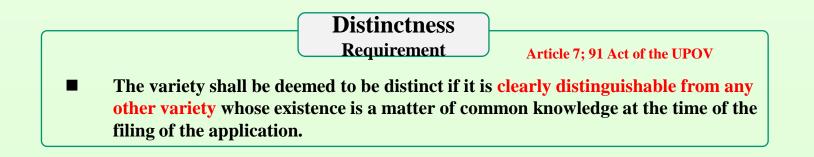
Maximum number of off-types

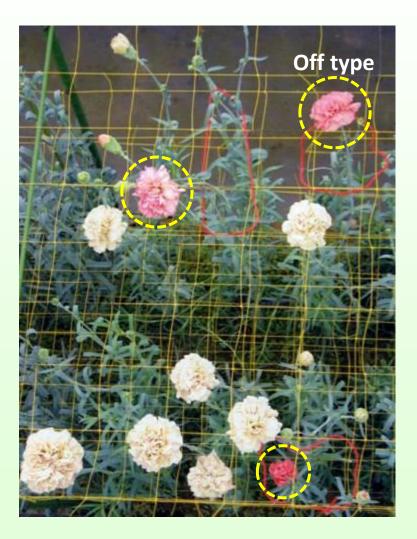
(acceptance probability; 95%)

Sample size			Popul	ation Sta	indard		
•	10%	5%	3%	2%	1%	0.50%	0.10%
10	3	2	1	1	1	0	0
20	4	3	2	2	1	1	0
60	10	6	4	3	2	1	1
100	15	9	6	5	3	2	1

TGP/8/4: PART II : 8 : THE METHOD OF UNIFORMITY ASSESSMENT ON THE BASIS OF OFF-TYPES 8.1.10 Tables and figures

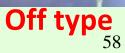
PS, AP in each UPOV TGs

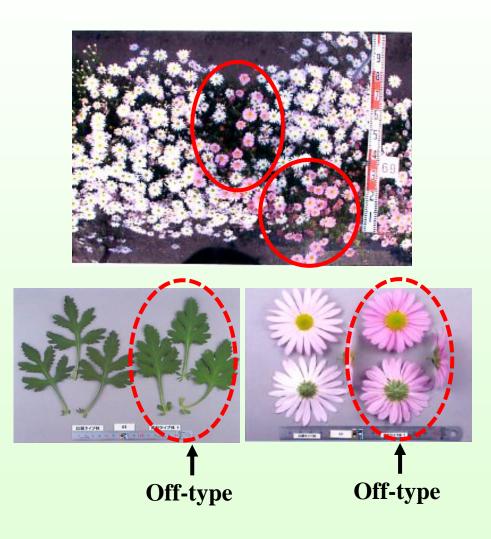

population standard	Acceptance probability	sample size	Number of off types	species
0.1	95	1500	4	Rice
0.1	95	2000	5	Durum wheat
1	95	5	0	Almond, Blueberry, Persimmon, Avocado, coffee, fig, Dragon fruit, Mango
1	95	6	1	Nerium, BirdCherry, Buddleja, Papaya
1	95	7	1	Eucalyptus,Rubber
1	95	8	1	Alstromeria, Hydrangea, Clematis, Rose of Sharon, Canna, Hebe
1	95	9	1	Phalaenopsis, Oncidium
1	95	10	1	Bougainvillea, Camellia, Pineapple, Dendrobium, TeaTree, Brachyscome, Poinsetia
1	95	12	1	Dahlia
1	95	15	1	ZonalPelargonium, Banana, Lobelia, Osteospermum, Sutera
				Yam, Peppermint, Pumpkin, Tomato, Lily, Melon, Gladiolus, Chrysanthemum,
1	95	20	1	Carnation
1	95	24	1	sugarcane
1	95	25	1	tulip
1	95	40	2	bitter gourd, asparagus, Brussels sprout,cucumber, Petunia, Antirrhinum,Onion
1	95	50	2	Amaranth, Sweet potato, Sesame
1	95	60	2	cornsalad, chinese Cabbage, broccoli, Calabres sprouting, chimes Chive, Shiitake
1	95	90	3	Oyster Mushroom
1	95	100	3	Chick Pea, Lentil
2	95	20	2	Elatior Begonia, Kalanchoe, Chili, Watermelon,
2	95	200	7	Beetroot, Carrot,Leek, Radish, Black Radish
3	95	40	3	Maize
5	95	40	4	Artichoke, Cardoon
Hybrids:2	Hybrids:95	Hybrids:100	Hybrids:5	
inbred:2		inbred:200,30		Parsnip
Hybrids:2 inbred:3	Hybrids:95 inbred:95	Hybrids:100 inbred:100	Hybrids:5 inbred:6	Spinach, 56
inbred:1	inbred:95 (s)cross:95	inbred:60	inbred:2	Cauliflower


TG/1/3 6.4.1.1

Off-type

A plant is to be considered an off-type: if it can be *clearly distinguished from the variety* in the expression of any characteristic of the whole or part of the plant that is used in the testing of distinctness, taking into consideration the particular features of its propagation.


clearly distinguished from the variety = same criteria as for Distinctness



Stability examination

Stability Examination

Stability Requirement

Article 9; 91 Act of the UPOV

The variety shall be deemed to be stable if its relevant characteristics remain unchanged after repeated propagation or, in the case of a particular cycle of propagation, at the end of each such cycle.

- \checkmark In practice, it is not usual to perform tests of stability.
- ✓ However, when a variety has been shown to be uniform, it can be considered to be stable
- ✓ Where appropriate, or in cases of doubt, stability may be tested, either by growing a further generation, or by testing a new seed or plant stock to ensure that it exhibits the same characteristics as those shown by the previous material supplied.

PART 2:

DUS Examination for Cross-pollinated varieties

Cross-pollinated varieties

Distinctness examination

- QL, PQ => Notes approach, same as vegetative propagated, self-pollinated varieties
- QN => Statistical analysis / Notes approach
 COYD method

Distinctness Examination

Cross-pollinated varieties

	V=Visual o	V=Visual observation or M=Measurement	
Method of propagation of the variety	QL	QN	
Vegetatively propagated, self-pollinated	Notes(VG)	Notes(VG) Side-by-side(VG)	Notes (VG/MG/MS) Side-by-side (VG) Statistics (MG/MS)
Cross-pollinated	Notes(VG) Statistics(VS*)	Notes(VG) Side-by-side(VG) Statistics(VS*)	Statistics ([MG]/MSVS) Side-by-side (VG) Notes (VG/MG/MS)
Hybrid - Three way cross - Double cross	Notes(VG)	Notes(VG) Side-by-side(VG)	Statistics ([MG]/MSVS) Side-by-side (VG) Notes (VG/MG/MS)

• The most common approach are listed first.

■ UNITED KINGDOM NATIONAL LIST/ PLANT BREEDERS RIGHTS TECHNICAL PROTOCOL FOR THE OFFICIAL EXAMINATION OF DISTINCTNESS, UNIFORMITY AND STABILITY (DUS) CARROT

Character Number										
CPVO TP/ CARROT/1 2004	UPOV TG/206/1 2003	UK	Character	Material examined	Number of plants or sample size for assessment	Method of assessment and recording	States of expression	D Method and Minimum distance required	U Method and Standard applied	
1D QN VG	1 QN VG	60D QN VG	Foliage: width of crown	DUS plot	At least 400 plants in total from 4 replicates	Visual observation or visual score	3 = narrow 5 = medium 7 = broad	Clear visual difference or 2 states	Off-type standard and Uniformity score >5	
2D QN VG	2 QN VG	70D QN VG	Leaf: attitude	DUS plot	At least 400 plants in total from 4 replicates	Visual observation or visual score	1 = erect 3 = semi-erect 5 = prostrate	Clear visual difference or 2 states	Off-type standard and Uniformity score >5	
3DG QN VG/MS	QN VG/MS	20D QN VG/MS	Lear: length (including petiole)	DUS plot or single plants	At least 400 plants in total from 4 replicates or at least 40 plants in total from 4 replicates	Visual observation or visual score or measurements on single plants	1 = very short 3 = short 5 = medium 7 =long 9 = very long	Clear Visual difference or 2 states or COYD @ 5% for both 2 and 3 year tests	Off-type standard and Uniformity score >5 or COYU at 0.1% for both 2 and 3 year tests	
4D QN VG	*4 QN VG	45D QN VG	Leaf: division	DUS plot	At least 400 plants in total from 4 replicates	Visual observation or visual score	3 = fine 5 = medium 7 = coarse	Clear visual difference or 2 states	Off-type standard and Uniformity score >5	COYD @5% for both
5D QN VG	*5 QN VG	71D QN VG	Leaf: intensity of green colour	DUS plot	At least 400 plants in total from 4 replicates	Visual observation or visual score	3 = light 5 = medium 7 = dark	Clear visual difference or 2 states	Off-type standard and Uniformity score >5	2 and 3 years tests
6D QL VG	*6 QL VG	24D QL VG	Leaf: anthocyanin coloration of petiole	DUS plot	At least 400 plants in total from 4 replicates	Visual observation or visual score	1 = absent 9 = present	1 state	Off-type standard and Uniformity score >5	
QN VG/MS	QN VG/MS	QN VG/MS	Root: length	or single plants	At least 400 plants in total from 4 replicates or at least 40 plants in total from	visual observation or visual score or measurements on single plants	1 = very snort 3 = short 5 = medium 7 = long 9 = very long	Clear Visual difference or 2 states or COYD @ 5% for both 2 and 3 year tests	Off-type standard Upitormity score >5 or COYU at 0.1% for both 2 and 3	

DistinctnessThe standard for measured or counted quantitative characters, is, at least, a 5% (P=0.05)5.1significant difference in one character over two or three growing cycles in a Combined Over
Years Distinctness (COYD) analysis.

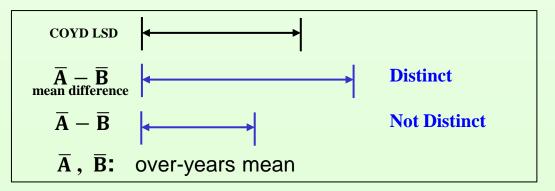
Maize: Method of examination

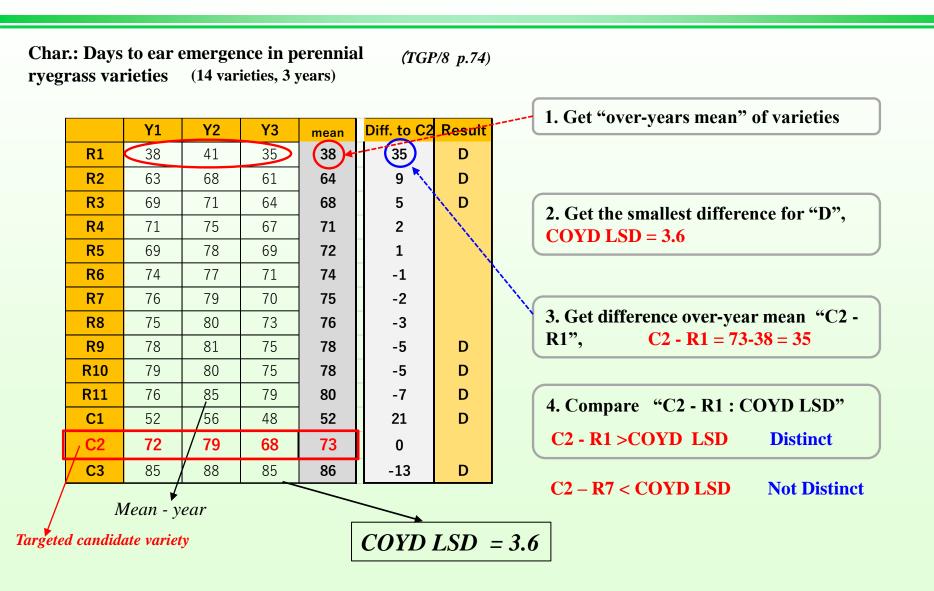
Maize: Method of examination & assessing Distinctness

		CPVO			
	Number of Growing Cycles	two growing cycles			
	Test Design	 40 plants: inbred lines and single hybrids 60 plants: other hybrids , open-pollinated varieties 			
Method of Examination	Number of Plants / Parts of Plants to be Examined	Inbred lines and single hybrids: 10 plants or parts taken from each of 10 plants Other types of hybrids: 20 plants or parts taken from each of 20 plants Open-pollinated varieties: 40 plants or parts taken from each of 40 plants			
Distinctness	<u>QN</u>	visually observed characteristics: at least the span of one note COYD: 1% significance level or less (p<0.01) in a test over either two or three years. t-test: 1% significance level or less (p<0.01) in two consecutive or two out of three growing cycles.			
Uniformity		Inbred lines and single hybrids: population standard of 3% with an acceptance probability of 95%. In the case of a sample of 40 plants, the maximum number of off-types allowed would be 3. three-way cross hybrids, double-cross hybrids and open-pollinated varieties: variability within the variety should not exceed the variability of comparable varieties already known.			

IN DUS EXAMINATION	UPOV International Union for the Protection of New Varieties of Plants		
		TGP/8/4	
		Original: English Date: November 1, 2019	
3. The combined over-years criteria for Distinctness(COYD)	Associated Document to the General Introduction to the Examination of Distinctness, Uniformity and Stability and the Development of Harmonized Descriptions of New Varieties of Plants (document TG/1/3) DOCUMENT TGP/8		
2.6 Description of the hybrid	TOTAL DESIGN AND TECHNIQUES USED IN THE EXAMINATIO	ON OF	
THE COMBINED OVER-YEARS CRITERIA FOR DISTINCTNESS (COYD).			
3.1 Summary of requirements for application of method 3.2 Summary			
3.3 Introduction			
3.4 The COYD method			
3.5 Use of COYD			
3.6 Adapting COYD to special circumstances			
3.6.1 Differences between years in the range of expression of a characteristic			
3.6.2 Small numbers of varieties in trials: Long-Term COYD			
3.6.3 Crops with grouping characteristics			
3.7 Implementing COYD			
3.8 References			
3.9 COYD statistical methods			
3.9.1 Analysis of variance			
3.9.2 Modified joint regression analysis (MJRA)			
3.9.3 Comparison of COYD with other criteria			
3.10 COYD software			

Combined-Over-Years Distinctness(COYD)


Standard Deviation approach


- Requirements for application of COYD method
 - Used with data on QN characteristics for <u>cross-pollinated and</u> <u>some self-pollinated varieties</u>
 - observations are made on a plant basis <u>over at least two years</u> or growing cycles, and at a single location
 - <u>Need at least 10 df, and preferably at least 20 df</u> for the varietiesby - years mean square
 - ✓ This corresponds to <u>11 comparable varieties</u>, two years of trials or <u>8 comparable varieties</u>, three years.
 - ✓ where there are small numbers of varieties in the test, Long-Term COYD can be used

Combined-Over-Years Distinctness

COYD method

- ✓ for each characteristic, taking the variety means from the two or three years of trials for candidates and comparable varieties and <u>producing over-year means</u> for the varieties;
- ✓ <u>calculate a least significant difference (LSD)</u>, based on varietyby-years variation, for comparing variety means;
- ✓ if the <u>over-years mean difference between two varieties is</u> <u>greater than or equal to the LSD</u> then the varieties are said to be <u>distinct</u> in respect of that characteristic.

Procedure for COYD

1. Calculating "over - years mean" of varieties

2. Calculating "LSD" value :

$$LSD_{p} = t_{p} \times \sqrt{2} \times SE(\overline{x})$$
$$SE(\overline{x}) = \sqrt{\frac{varieties - by - years mean square}{number of test years}}$$

3. Comparing "LSD" to "over – years mean difference between two varieties $(|\overline{x}_1 - \overline{x}_2|)$ "

 $|\overline{x}_1 - \overline{x}_2| \ge LSD$ Distinct $|\overline{x}_1 - \overline{x}_2| < LSD$ Not Distinct

How to get LSD value

$$LSD_p = t_p \times \sqrt{2} \times SE(\overline{x})$$

<u> t_p </u> \Rightarrow taken from Student's t table for a two-tailed test with probability *p* and with degree of freedom(df) with the variety-by-years mean square.

S	$E(\overline{x}) =$	$=\sqrt{\frac{varie}{\sqrt{\frac{varie}{varie}}}}$	ties – by – years mean squqre number of test years					
	ANOVA							
-	Source of Variation	SS	df	MS	F	P-value	F crit	
-	Varieties	5883.6	13	452.59	177.91	5.79E-22	2.1192	
	Years	349.86	2	174.93	68.762	4.15E-11	3.369	
	Error	66.143	26	2.544				
	Total	6299.6	41					

$$t_{p} \quad \sqrt{2} \quad SE(\bar{x})$$

$$LSD = 2.779 * 1.414 * \sqrt{\frac{2.544}{3}}$$

$$= 3.6$$

$$t_{p} = tinv (0.01, df)$$

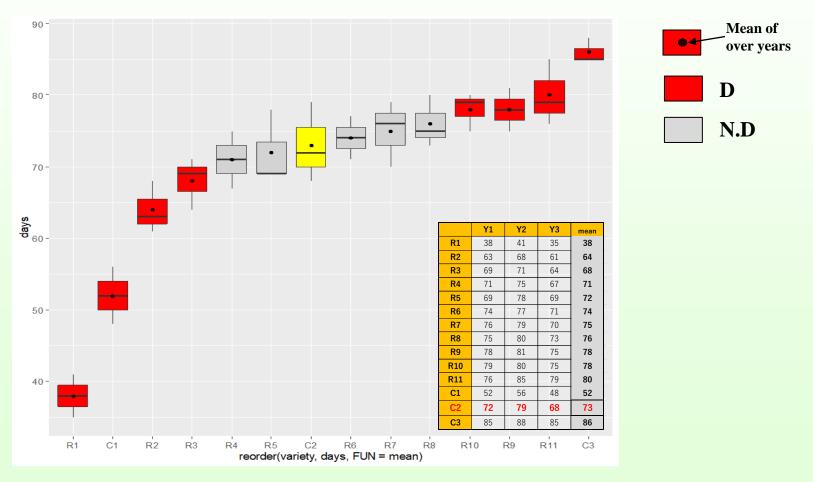
$$= tinv (0.01, 26) (EXCEL)$$

$$= 2.779$$

$$SE(\bar{x}) = \sqrt{\frac{2.544}{3}}$$

t Table

cum. prob one-tai		t.75 0.25	t _{.80} 0.20	t.85 0.15	t.90 0.10	t.95 0.05	t.975 0.025	t.99 0.01	t.995 0.005	t.999 0.001	t.9995 0.0005
two-tails		0.50	0.40	0.30	0.20	0.10	0.05	0.02	0.01	0.002	0.001
	· ·	4 000	4 070	4 000	0.070	0.044	40.74	04.00	00.00	040.04	000.00
1		1.000 0.816	1.376 1.061	1.963 1.386	3.078 1.886	6.314 2.920	12.71 4.303	31.82 6.965	63.66 9.925	318.31 22.327	636.62 31.599
2	0.000										
3		0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841	10.215	12.924
4		0.741 0.727	0.941 0.920	1.190 1.156	1.533 1.476	2.132 2.015	2.776 2.571	3.747 3.365	4.604 4.032	7.173 5.893	8.610 6.869
6		0.727	0.920	1.134	1.470	1.943	2.447	3.143	3.707	5.208	5.959
7	0.000	0.718	0.896	1.134	1.440	1.895	2.365	2.998	3.499	4.785	5.408
8		0.706	0.889	1.108	1.397	1.860	2.305	2.996	3.355	4.785	5.041
9	0.000	0.703	0.883	1.100	1.383	1.833	2.262	2.830	3.250	4.297	4.781
10	0.000	0.700	0.879	1.093	1.372	1.812	2.228	2.764	3.169	4.144	4.587
11		0.697	0.876	1.088	1.363	1.796	2.201	2.718	3.106	4.025	4.437
12		0.695	0.873	1.083	1.356	1.782	2.179	2.681	3.055	3.930	4.318
13		0.694	0.870	1.079	1.350	1.771	2.160	2.650	3.012	3.852	4.221
14		0.692	0.868	1.076	1.345	1.761	2.145	2.624	2.977	3.787	4.140
15		0.691	0.866	1.074	1.341	1.753	2.131	2.602	2.947	3.733	4.073
16		0.690	0.865	1.071	1.337	1.746	2.120	2.583	2.921	3.686	4.015
17		0.689	0.863	1.069	1.333	1.740	2.110	2.567	2.898	3.646	3.965
18		0.688	0.862	1.067	1.330	1.734	2.101	2.552	2.878	3.610	3.922
19		0.688	0.861	1.066	1.328	1.729	2.093	2.539	2.861	3.579	3.883
20		0.687	0.860	1.064	1.325	1.725	2.086	2.528	2.845	3.552	3.850
21	0.000	0.686	0.859	1.063	1.323	1.721	2.080	2.518	2.831	3.527	3.819
22		0.686	0.858	1.061	1.321	1.717	2.074	2.508	2.819	3.505	3.792
23	3 0.000	0.685	0.858	1.060	1.319	1.714	2.069	2.500	2.807	3.485	3.768
24		0.685	0.857	1.059	1.318	1.711	2.064	2.492	2.797	3.467	3.745
25		0.684	0.856	1.058	1.316	1.708	2.060	2.485	2.787	3.450	3.725
26		0.684	0.856	1.058	1.315	1.706	2.056	2.479	2.779	3.435	3.707
27		0.684	0.855	1.057	1.314	1.703	2.052	2.473	2.771	3.421	3.690
28		0.683	0.855	1.056	1.313	1.701	2.048	2.467	2.763	3.408	3.674
29		0.683	0.854	1.055	1.311	1.699	2.045	2.462	2.756	3.396	3.659
30		0.683	0.854	1.055	1.310	1.697	2.042	2.457	2.750	3.385	3.646
40		0.681	0.851	1.050	1.303	1.684	2.021	2.423	2.704	3.307	3.551
60		0.679	0.848	1.045	1.296	1.671	2.000	2.390	2.660	3.232	3.460
80		0.678	0.846	1.043	1.292	1.664	1.990	2.374	2.639	3.195	3.416
100		0.677	0.845	1.042	1.290	1.660	1.984	2.364	2.626	3.174	3.390
1000		0.675	0.842	1.037	1.282	1.646	1.962	2.330	2.581	3.098	3.300
z		0.674	0.842	1.036	1.282	1.645	1.960	2.326	2.576	3.090	3.291
	0%	50%	60%	70%	80%	90%	95%	98%	99%	99.8%	99.9%
					Confi	dence Lo	evel				


https://towards data science.com/hypothesis-testing-using-t-test-inferential-statistics-part 3-6fb 43683 bc 32

Result of COYD

	Y1	Y2	Y3	mean	Diff. to C2	Result		
R1	38	41	35	38	35	D		C2 is Distinct from R1, R2, R3,
R2	63	68	61	64	9	D		R9, R10,R11
R3	69	71	64	68	5	D		
R4	71	75	67	71	2	ND		
R5	69	78	69	72	1	ND		
R6	74	77	71	74	-1	ND ⊲ ∙		C2 is Not Distinct from R4,
R7	76	79	70	75	-2	ND		R5 ,R6, R7, R8
R8	75	80	73	76	-3	ND		
R9	78	81	75	78	-5	D		
R10	79	80	75	78	-5	D		
R11	76	8 5	79	80	-7	D		
C1	52	/56	48	52	21	D		
C2	72	79	68	73	0			$ \overline{x}_1 - \overline{x}_2 \ge LSD$ Distinct
C3	85 /	88	85	86	-13	D		$ \overline{x}_1 - \overline{x}_2 < LSD$ Not Distinct
	/							
Me	an value	e - year		Γ	LSD =	3.6		

Result of COYD

How to get *varieties by years mean squqre* _ *ANOVA*

rom From From From Other E		how Queries rom Table	⊉ c	roperties	ATOK拡張 ATOK拡張 Sort Filte	ツール JUS 「、Clear	ply	probat :	クセル統計 ■→ Remove Duplicates V	Data (-	ne what you v	?			野忠雄 [리 × 우 Share ata Analysis
Get External Data	Get & T	ransform	Connect	tions	Sort 8	l Filter				Data Tools			Fore	cast	Ou	tline		Analysis
A B C	D E	F	G	H I	J	К	L	М	N	0	Р	Q	R	S	Т	U	v	W
How to ge	et "Anal	ysis 🕽	Fool I	Pak"							ata ata A	Analy	sis	/	/			
Excel							Data	Anal	ysis							?	×	
File Options Add-ins Analysis To	ool Pak						Anov Anov Corre		-Factor	With Re Withou					^	Oł Cano	-	
Go Can get "D	ata Analy Anova: T		ctor Wi	thout Re	eplicat	ion	Desc Expo F-Te Four	riptive nentia			riances					<u>H</u> el	lp	
7 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3								ing Ave			1	1 1			×			+ 100

■ How to get varieties – by – years mean squqre _ ANOVA

6	€	o c	≂		Book1 - Excel	水野 忠雄 🔑	M –
F	ile	タッチ ト	Home Inse	rt Page La	.ayout Formulas Data Review View Help Q Tell me what you want to do		۶
10		~	1 6	<u> </u>			
19 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	A R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 C1 C2 C3 ANG SO	 E Y1 38 63 69 71 69 74 76 75 78 79 76 52 72 85 	 ✓ fx C Y2 41 68 71 75 78 77 79 80 81 80 85 56 79 88 	rt Page L V3 35 61 64 67 69 71 70 73 75 75 79 48 68 85 85 68 85	E F G H J K L M N O P Q R S Data Analysis Analysis Tools ? X Anova: Single Factor OK Anova: Two-Factor With Replication ^ Cancel Anova: Two-Factor Without Replication Correlation Covariance Descriptive Statistics Exponential Smoothing F-Test Two-Sample for Variances Fourier Analysis Histogram MS	т U ? ? Сапс Нец	el
22 23	-	riation	5883.6	13	Output options		
24		rieues lears	349.86	2	174 93 68 762 4 15E-11 3 269	1	
25 26		Error	66.143	26	2.544		
27 28		Total	6299.6	41	O New Workbook		
28							
30							

Cross-pollinated varieties

Uniformity examination

- QL, PQ => Off-type approach, same as vegetative propagated, self-pollinated varieties
- QN => Standard Deviation approach

COYU method Relative variance method

Uniformity Examination

Cross-pollinated varieties

Assessment of Uniformity

TGP/10/1 2.5.2

Method of propagation of the variety	QL	PQ	QN
Vegetatively propagated Self-pollinated	Off-types	Off-types	Off-types (Visual observation) Standard deviations (measurement)
Cross-pollinated	Off-types	Off-types	Standard deviations
	0.00		
Single hybrid (inbred parent lines)	Off-types	Off-types	Off-types (Visual observation) Standard deviations (measurement)

- The most common approaches are listed first.

Uniformity Examination

Cross-pollinated varieties

UNITED KINGDOM NATIONAL LIST/ PLANT BREEDERS RIGHTS TECHNICAL PROTOCOL FOR

THE

OFFICIAL EXAMINATION OF DISTINCTNESS, UNIFORMITY AND STABILITY (DUS)

Chara	acter Num	ber	1		CARR	UI				
CPVO TP/ CARROT/1 2004	UPOV TG/206/1 2003	UK	Character	Material examined	Number of plants or sample size for assessment	Method of assessment and recording	States of expression	D Method and Minimum distance required	U Method and Standard applied	
1D QN VG	1 QN VG	60D QN VG	Foliage: width of crown	DUS plot	At least 400 plants in total from 4 replicates	Visual observation or visual score	3 = narrow 5 = medium 7 = broad	Clear visual difference or 2 states	Off-type standard and Uniformity score >5	
2D QN VG	2 QN VG	70D QN VG	Leaf: attitude	DUS plot	At least 400 plants in total from 4 replicates	Visual observation or visual score	1 = erect 3 = semi-erect 5 = prostrate	Clear visual difference or 2 states	Off-type standard and Uniformity score >5	
3DG QN VG/MS	*3G QN VG/MS	20D QN VG/MS	Leaf: length (including petiole)	DUS plot or single plants	At least 400 plants in total from 4 replicates or at least 40 plants in total from 4 replicates	Visual observation or visual score or measurements on single plants	1 = very short 3 = short 5 = medium 7 =long 9 = very long	Clear visual difference or 2 states or COYD @ 5% for both 2 and 3 year tests	Off-type standard and Uniformity score >5 or COYU at 0.1% for both 2 and 3 year tests	
4D QN VG	*4 QN VG	45D QN VG	Leaf: division	DUS plot	At least 400 plants in total from 4 replicates	Visual observation or visual score	3 = fine 5 = medium 7 = coarse	Clear visual difference or 2 states	Off-type standard and Uniformity score >5	COYU @0.1% for both
5D QN VG	*5 QN VG	71D QN VG	Leaf: intensity of green colour	DUS plot	At least 400 plants in total from 4 replicates	Visual observation or visual score	3 = light 5 = medium 7 = dark	Clear visual difference or 2 states	Off-type standard and Uniformity score >5	2 and 3 years tests
6D QL VG	*6 QL VG	24D QL VG	Leaf: anthocyanin coloration of petiole	DUS plot	At least 400 plants in total from 4 replicates	Visual observation or visual score	1 = absent 9 = present	1 state	Off-type standard and Uniformity score >5	
7DG QN VG/MS	*7G QN VG/MS	31D QN VG/MS	Root: length	DUS plot or single plants	At least 400 plants in total from 4 replicates or at least 40 plants in total from	Visual observation or visual score or measurements on single plants	1 = very short 3 = short 5 = medium 7 = long 9 = very long	Clear visual difference or 2 states or COYD @ 5% for both 2 and 3 year tests	Off-type standard and Uniformity score >5 or COYU at 0.1% for both 2 and 3	

6.4 For cross-pollinated varieties, relative uniformity should be applied

Uniformity 6.10 it can be considered sufficiently uniform after two test cycles if COYU analysis is not significantly greater than that of the reference varieties at the 0.1% (P=0.001) significance level.

International Union for the Protection of New Varieties of Plants

Е

TGP/8/4 Original: English Date: November 1, 2019

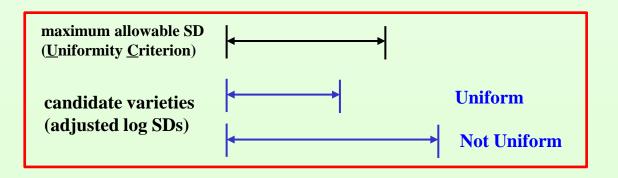
■ **TGP/8** SELECTED TECHNIQUES USED IN DUS EXAMINATION UP@V

9. The combined over-years uniformity criterion (COYU)

	()		
		Associated Document	to the
	8.1.9 Definition of statistical terms and symbols		the Examination of Distinctness, Uniformity and Stability f Harmonized Descriptions of New Varieties of Plants (document TG/1/3)
	8.1.10 Tables and figures	103	
9.	THE COMBINED-OVER-YEARS UNIFORMITY CRITERION (COYU).	110	
	9.1 Summary of requirements for application of method	110	
	9.2 Summary		ECHNIQUES USED IN THE EXAMINATION OF ORMITY AND STABILITY
	9.3 Introduction		
	9.4 The COYU Criterion		session
	9.5 Use of COYU	111	
	9.6 Mathematical details		
	9.7 Early decisions for a three-year test		
	9.8 Example of COYU calculations		
	9.9 Implementing COYU		
	9.10 COYU software		
	9.10.1 DUST computer program		
	9.11 Schemes used for the application of COYU	120	
10.	UNIFORMITY ASSESSMENT ON THE BASIS OF THE RELATIVE VARIANCE METHOD		
	10.1 Use of the relative variance method		
	10.2 Thresholds for different sample sizes		
	10.3 The relative variance test in practice		
	10.4 Example of relative variance method		
	10.5 Relationship between relative variance and relative standard deviation		
11.	EXAMINING CHARACTERISTICS USING IMAGE ANALYSIS		
	11.1 Introduction		
	11.2 Combined characteristics		
	11.3 Image recording: calibration and standardization		
	11.4 Conclusions		
	11.5 References		
12.	EXAMINING CHARACTERISTICS ON THE BASIS OF BULK SAMPLES	128	

Combined Over-Years Uniformity (COYU)

COYU method


The COYU method is a method for assessing uniformity using <u>relative tolerances limit</u> calculated based on Standard Deviation (SD) obtained from over several years testing of comparable varieties.

Requirements for application of COYU method

- Used with data on <u>measured QN</u> characteristics (MS)
- observations are made on a plant basis <u>over two or more years</u>
- When there are some differences between plants of a variety, <u>representing quantitative variation rather than presence of off-oypes</u>.
- Need <u>at least 20 df</u>
 - ✓ This corresponds to 11 comparable varieties, two years of trials or 8 comparable varieties, three years.

COYU method

- 1. <u>Calculation of within-plot SDs</u> for each variety in each year.
- 2. <u>Transformation of SDs</u>: by adding 1 and converting to natural logarithms.
- 3. <u>Estimation of the relationship between the SD and mean in each year.</u>
- 4. <u>Adjustments of log SDs</u> of candidate and comparable varieties based on the estimated relationships between SD and mean in each year.
- 5. <u>Averaging of adjusted log SDs</u> over years.
- 6. <u>Calculation of the maximum allowable SD (the Uniformity Criterion).</u>
- 7. <u>Comparison of the adjusted log SDs of candidate varieties with the UC.</u>

Procedure for COYU

 Example data-set
 : days to ear emergence: perennial ryegrass (12 varieties, 3 years)

 Step: 1.
 Calculation of within-plot SDs for each variety in each year. (TGP/8, p.115)

	Char	acter M	eans	Within Plot SD			
Variety	Year 1	Year 2	Year 3	Year 1	Year 2	Year 3	
R1	38	41	35	8.5	8.8	9.4	
R2	63	68	61	8.1	7.6	6.7	
R3	69	71	64	9.9	7.6	5.9	
R4	71	75	67	10.2	6.6	6.5	
R5	69	78	69	11.2	7.5	5.9	
R6	74	77	71	9.8	5.4	7.4	
R7	76	79	70	10.7	7.6	4.8	
R8	75	80	73	10.9	4.1	5.7	
R9	78	81	75	11.6	7.4	9.1	
R10	79	80	75	9.4	7.6	8.5	
R11	76	85	79	9.2	4.8	7.4	
C1	52	56	48	8.2	8.4	8.1	

$$SD_{j} = \sqrt{\frac{\sum_{i=1}^{n} (y_{ij} - y_{j})^{2}}{(n-1)}}$$
$$SD = \frac{\sum_{j=1}^{r} SD_{j}}{r} \quad \text{(averaged over all replicates)}$$

y_{ij}: measured value *y_j*: mean of measured value
n: number of plants
r: number of replicates

Procedure for COYU

Step: 2. <u>Transformation of SDs</u>: by adding 1 and converting to natural logarithms.

	Char	acter M	eans	With	in Plot	SD	Log (SD+1)			
Variety	Year 1	Year 2	Year 3	Year 1	Year 2	Year 3	Year 1	Year 2	Year 3	
R1	38	41	35	8.5	8.8	9.4	2.25	2.28	2.34	
R2	63	68	61	8.1	7.6	6.7	2.21	2.15	2.04	
R3	69	71	64	9.9	7.6	5.9	2.39	2.15	1.93	
R4	71	75	67	10.2	6.6	6.5	2.42	2.03	2.01	
R5	69	78	69	11.2	7.5	5.9	2.50	2.14	1.93	
R6	74	77	71	9.8	5.4	7.4	2.38	1.86	2.13	
R7	76	79	70	10.7	7.6	4.8	2.46	2.15	1.76	
R8	75	80	73	10.9	4.1	5.7	2.48	1.63	1.90	
R9	78	81	75	11.6	7.4	9.1	2.53	2.13	2.31	
R10	79	80	75	9.4	7.6	8.5	2.34	2.15	2.25	
R11	76	85	79	9.2	4.8	7.4	2.32	1.76	2.13	
C1	52	56	48	8.2	8.4	8.1	2.22	2.24	2.21	

$$LN(1+8.5) = 2.25$$
 (Excel)

Purpose of transformation : is to make the SDs easier to handle in statistical analysis.

Procedure for COYU

5. Averaging of adjusted log SDs over years.

- **Step:** 3. <u>Estimation of the relationship between the SD and mean in each year</u>. The method used is based on moving averages of the log SDs of comparable varieties ordered by their means.
 - 4. <u>Adjustments of log SDs of candidate and comparable varieties</u> based on the estimated relationships between SD and mean in each year. Adjust

5. Averaging of aujusted log 5D5 over years.											-				
	Cha	racter N	leans	Within Plot SD			L	og (SD+	1)		Over-Year Means		Adj. Log (SD+1)		
Variety	Year 1	Year 2	Year 3	Year 1	Year 2	Year 3	Year 1	Year 2	Year 3		Char. mean	Adj. Log (SD+1)	Year 1	Year 2	Year 3
R1	38	41	35	8.5	8.8	9.4	2.25	2.28	2.34		38	2.26	2.36	2.13	2.3
R2	63	68	61	8.1	7.6	6.7	2.21	2.15	2.04		64	2.1	2.32	2	2
R3	69	71	64	9.9	7.6	5.9	2.39	2.15	1.93		68	2.16	2.42	2.1	1.95
R4	71	75	67	10.2	6.6	6.5	2.42	2.03	2.01		71	2.15	2.43	1.96	2.06
R5	69	78	69	11.2	7.5	5.9	2.50	2.14	1.93		72	2.2	2.52	2.14	1.96
R6	74	77	71	9.8	5.4	7.4	2.38	1.86	2.13		74	2.12	2.36	1.84	2.16
R7	76	79	70	10.7	7.6	4.8	2.46	2.15	1.76		75	2.14	2.43	2.19	1.8
R8	75	80	73	10.9	4.1	5.7	2.48	1.63	1.90		76	2.02	2.44	1.7	1.91
R9	78	81	75	11.6	7.4	9.1	2.53	2.13	2.31		78	2.3	2.52	2.16	2.24
R10	79	80	75	9.4	7.6	8.5	2.34	2.15	2.25		78	2.22	2.33	2.23	2.09
R11	76	85	79	9.2	4.8	7.4	2.32	1.76	2.13		80	2.01	2.28	1.78	1.96
Mean											70	2.15	2.4	2.02	2.04
C1	52	56	48	8.2	8.4	8.1	2.22	2.24	2.21		52	2.19	2.32	2.08	2.17

Procedure for COYU

- **Step:** 6. <u>Calculation of the maximum allowable SD (the Uniformity Criterion: UC).</u>
 - 7. <u>Comparison of the adjusted log SDs of candidate varieties with the maximum allowable SD.</u>

	Over-Ye	ar Means	Adj. Log (SD+1)					
Variety	Char. mean	Adj. Log (SD+1)	Year 1	Year 2	Year 3			
R1	38	2.26	2.36	2.13	2.3			
R2	<mark>64</mark>	2.1	2.32	2	2			
R3	<mark>68</mark>	2.16	2.42	2.1	1.95			
R4	71	2.15	2.43	1.96	2.06			
R5	72	2.2	2.52	2.14	1.96			
R6	74	2.12	2.36	1.84	2.16			
R7	75	2.14	2.43	2.19	1.8			
R8	76	2.02	2.44	1.7	1.91			
R9	78	2.3	2.52	2.16	2.24			
R10	78	2.22	2,33	2.23	2.09			
R11	80	2.01	2.28	1.78	1.96			
Mean	70	2.15	2.4	2.02	2.04			
C1	52	<u>2.19</u>	2.32	2.08	2.17			

$$UC_p = SD_r + t_p \sqrt{V\left(\frac{1}{k} + \frac{1}{Rk}\right)}$$

SD: 2.15; Over-Year mean of Adj. Log(SD+1)
 t_p: 3.118; Student's t table with p=0.002 (one-tailed) and 30 degrees of freedom

tinv(0.002*2,30) = 3.118 (Excel)

V: 0.0202; variance of the adjusted log SDs after removing year effects ; MS of Varieties within years in ANOVA

k: *3*; number of years

R: 11; number of comparable varieties

$$UC_{p} = SD_{r} + t_{p}\sqrt{V\left(\frac{1}{k} + \frac{1}{Rk}\right)} = 2.15 + 3.118x\sqrt{0.0202x\left(\frac{1}{3} + \frac{1}{3x11}\right)} = 2.42$$

mean adjusted log $(SD + 1) \leq 2.42$ Uniform

How to get Mean Square of Varieties within years

	Over-Ye	ar Means	Adj. Log (SD+1)					
Variety	Char. mean	Adj. Log (SD+1)	Year 1	Year 2	Year 3			
R1	38	2.26	2.36	2.13	2.3			
R2	64	2.1	2.32	2	2			
R3	68	2.16	2.42	2.1	1.95			
R4	71	2.15	2.43	1.96	2.06			
R5	72	2.2	2.52	2.14	1.96			
R6	74	2.12	2.36	1.84	2.16			
R7	75	2.14	2.43	2.19	1.8			
R8	76	2.02	2.44	1.7	1.91			
R9	78	2.3	2.52	2.16	2.24			
R10	78	2.22	2.33	2.23	2.09			
R11	80	2.01	2.28	1.78	1.96			
Mean	70	2.15	2.4	2.02	2.04			
C1	52	2.19	2.32	2.08	2.17			

Analysis of variance table for adjusted log (SD+1)

Source of variation	Df	Sum Sq	Mean Sq
Year	2	1.01069	0.50535
Varieties within years(=residual)	<mark>30</mark>	0.60527	0.02018
Total	32		

V: 0.0202; variance of the adjusted log SDs after removing year effects ; MS of Varieties within years in ANOVA

Df:

Year: (number of year -1) =2 Varieties within year = (number of Varieties -1) (number of years)

How to get *Mean Square of Varieties within years*

AutoS	ave 🧿	س 1	७ • ९	× 🛱 ⊽		Book1	- Excel	Q	Search					水野 忠雄	<	Ø
File	タッチ	Home	e Insert	Page La	out For	mulas D	ata Review N	/iew De	veloper I	Help					🖻 Share 🖇	⊐ Comment
Get Data ~ [From	n Table/Ra	Exis	cent Sources sting Connect	Ref Al	resh Prop I ~ & Edit		Stock		v v	Ž↓ <mark>Ž A</mark> Z↓ Sort	Filter	Text to Columns S		The Data Analysis	
2 Va	riety	Char. mean	Adj. Log (SD+1)	Year 1	Year 2	Year 3			Data	Analysis					7	×
_	र1	38	2.26	2.36	2.13	2.3			Data A	Analysis	J				f	
	22	64	2.1	2.32	2	2			Analy	sis Tools						
5 F	र3	68	2.16	2.42	2.1	1.95			Analy	SIS TOOIS					ОК	
6 F	२4	71	2.15	2.43	1.96	2.06			Anov	/a: Single	Factor			~		
7 F	₹5	72	2.2	2.52	2.14	1.96						ith Replication			Cance	1
8 F	₹6	74	2.12	2.36	1.84	2.16						ithout Replicati	on		cance	
9 F	२७	75	2.14	2.43	2.19	1.8						nulout Replicau	on			
10 F	₹8	76	2.02	2.44	1.7	1.91				elation					Help	
	२9	78	2.3	2.52	2.16	2.24				riance					11-1P	
	10	78	2.22	2.33	2.23	2.09				riptive St						
-	11	80	2.01	2.28	1.78	1.96			Expo	onential Si	moothir	ng				
-	ean	70	2.15	2.4	2.02	2.04			F-Te	st Two-Sa	imple fo	or Va <u>riances</u>				
	C1	52	2.19	2.32	2.08	2.17			Four	ier Analys	is	Anova: Sing	le Factor		?	×
16										ogram Ó						~
17										- <u>g</u> . a		Input		-	ОК	
18			Anova: S	ingle Facto	or 🛛			L				Input Range	:	\$D\$3:\$F\$13		
20			ANOVA									Grouped By		Columns	Cancel	
				f Variatior	ss		A40	-	0l.	C				O <u>R</u> ows	Help	
21					33	df	MS	F	P-value	F crit		Labels in	n first row			
22			Between	Groups	1.01069	2	0.505345455	25.0472	4E-07	3.31583			0.05			
												Zibua.				
23			Within G	iroups	0.60527	30	0.020175758					Output optic	ins			
24								,							1	
												Output I	Range:	\$H\$1		
25				Total	1.61596	32						O New Wo	orksheet <u>P</u> ly:			
26 27													orkbook			
28																
29																
	(Shaat1		:	1							• •	1		1	r.

Relative variance method

■ **TGP/8** SELECTED TECHNIQUES USED **IN DUS EXAMINATION** UPOV Ε International Union for the Protection of New Varieties of Plant **TGP/8/4** Original: English Date: November 1 2019 10. Uniformity assessment on the basis of the relative variance method Associated Document to the General Introduction to the Examination of Distinctness, Uniformity and Stability and the Development of Harmonized Descriptions of New Varieties of Plants (document TG/1/3) 9.4 USED IN THE EXAMINATION OF 9.5 STABILITY 9.6 9.7 9.8 9.9 9.10 9.11 10. 10.1 10.2 10.3 10.4 10.5 11. 11.1 11.2 11.3 11.4 11.5 12

Relative Variance Method

Relative variance method

- ✓ applied to any measured characteristic that is a continuous variable, irrespective of the method of propagation of the variety.
- ✓ In cross-pollinated varieties, taking 60 plants for measurements per characteristic per variety.
- ✓ Calculation of relative variance

 $\blacktriangleright \text{ Relative variance} = \frac{\text{variance of the candidate}}{\text{average variance of the comparable varieties}}$

✓ Compare Relative variance with Thresholds of F Table of the relevant sample size

Relative variance \leq threshold	Uniform
Relative variance > threshold	Not Uniform

Relative variance method

Relative variance method

Example: TGP/8 10.1 Use of the relative variance method

variances of candidate and comparable varieties for plant height data (QN, MS)

Candidate variety	Comparable variety 1	Comparable variety 2	Comparable variety 3	Comparable variety 4	
5.6	7.8	4.5	3.2	5.8	average variance =5.32

- \checkmark The number of observations per variety : 60
- ✓ The average variance for comparable varieties is (7.8 + 4.5 + 3.2 + 5.8) / 4 = 5.32
- ✓ **Relative variance** = variance of the candidate / average variance of the comparable varieties = 5.6/5.32 = 1.05
- ✓ From F-table, for a sample size of $60 : \infty$; the threshold = 1.47;
- ✓ Relative variance: threshold 1.05 < 1.47, Relative variance is less than threshold
- ✓ therefore, the candidate variety is uniform for that characteristic

Relative variance method

Threshold limit for relative variance for some different sample sizes

TGP/8 p.124

Sample size of candidate	Threshold limit for relative variance (S ²)				
30	1.70				
40	1.59 1.53				
50					
60	1.47				
80	1.41				
100	1.36				
150	1.29				
200	1.25				

Usage of COYD and COYU

COYU Standards

TWC/21/7

Herbage Crops:

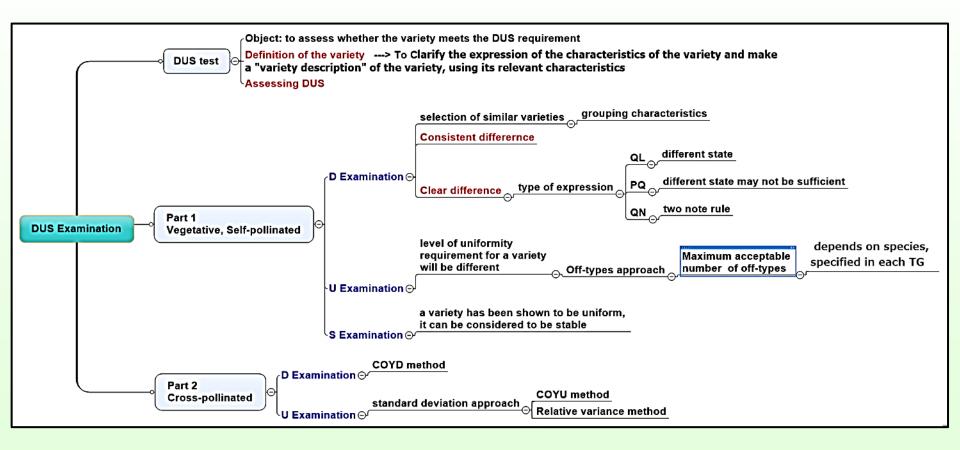
- Festuca, June grass, Lotus corniculatus L., Lucerne, Ryegrass, Tall vat.grass, Timothy, Red Clover, White Clover,

Other Agricultural Crops:

- Beta vulgaris L., Hordeum vulgare L., Lupins, Oilseed Rape, Turnip, Rape, Vicia faba L.,

Vegetables and Other Crops:

- Beetroot, Leaf Beet, Black Radish, Cabbage, Brussels Sprouts, Sprouting Broccoli, Calabrese, Carrot, Celery, Onion, Shallot, Leek, Parsnip, Sweet melon, Turnip, Watermelon,


Types of Characteristics by Crop

Number of types of characteristics:

	QL	PQ	QN	Total
Rice	10	20	<mark>35</mark>	65
Tomato	10	3	<mark>33</mark>	46
Maize	2	3	<mark>36</mark>	41
Carrot	4	6	<mark>22</mark>	32

How to assess the QN characteristics is the point of DUS examination !!

Summary

Thank you for your attention

Any Question ? Please feel free to email me !!

