Philippines Rice Breeding and Production

Elvira D. Morales Plant Variety Protection Office Philippines

Increase productivity in the different rice growing ecosystems

O OBJECTIVE

To identify high yielding rice lines with tolerance to biotic and abiotic stresses and good grain quality that can adapt to the different rice growing ecosystems

Plant Breeding Priorities

- O Increasing yield potential
- Multiple resistance to diseases and insects
- O Increasing tolerance for abiotic Stresses
- **O** Superior quality
- Appropriate growth duration
- O Efficient nutrient uptake and utilization
- Adaptation to climate change

Breeding Centers

> UPLB

PhilRice

> Other private companies

Role of Breeding Centers

Generate promising lines and submit to national programs for test in specific regions/sites

→ a line performing better than commercially cultivated varieties = recommended for release as new variety

The agency sponsoring the line for release provides the breeder seed for foundation seed production.

Breeding Programs

O DEVELOPMENT OF IRRIGATED LOWLAND RICE

- Transplanted Inbred Rice
- Direct seeded Inbred Rice
- **O DEVELOPMENT OF HYBRID RICE**
- **O DEVELOPMENT OF SPECIAL PURPOSE RICE**
- Variety development for rainfed, upland and abiotic stress-prone environments

Strategies and breeding methods

Conventional hybridization and selection procedures

- Basic, time-tested
- To generate and utilize existing genetic variation
- Generates a wide array of combinations of the genes coming from the parent plants
- Cross-pollination followed by several cycles of selection and self-pollination → stable promising lines
 → candidate varieties

Cutting-edge Technology Development in support to breeding

- Biotechnology
 - increasing breeding efficiency
 - improving resistance/tolerance to biotic & abiotic
 - stresses
- Molecular marker technology
 - using marker-aided selection
 - germplasm characterizations
- Induced mutations
 - In vitro techniques- developing lines for adverse environments
 - Physical & Chemical mutagenesis
- Genetic engineering
 - cloning/introduction of important genes
- Wide hybridization
 - transferring resistance genes

Process of Varietal Release at the NCT

Varietal Development and Release

Testing Sites.....

The Philippine Rice R&D Network

Composition (57)

- 2 national centers
- 6 branch stations
- 12 regional research stations
- 37 cooperating stations

Number of Recommended Varieties by Ecosystem from 1968 to 2013

Period	Irrigated Iowland	Rainfed Iowland	Upland	Cool elevated	Saline	TOTAL
1968-1988	43	4	7	-	-	54
1990-2010	87	17	6	6	13	129
2011-2013	57	11	1	•	13	82
TOTAL	187	32	14	6	26	265

Trends in Philippine Rice Production

Paddy yield, 2000-2011

Yield peaked in 2007 at 3.80 mt/ha. Highest yield was 4.21 mt/ha in irrigated areas; 2.98 mt/ha in non-irrigated areas.

GROWTH IN YIELD

Growth (in mt/year)	2000-2010	2010-2011	
All Ecosystems	63	55	
Irrigated	58	36	
Non-Irrigated	66	146	

Growth (in %)	2000-2010	2010-2011	
All Ecosystems	1.83	1.54	
Irrigated	1.53	0.90	
Non-Irrigated	2.53	5.36	

HARVEST AREA, 2000-2011

Irrigated Non-irrigated

GROWTH IN HARVEST AREA

Growth (in mt/year)	2000-2010	2010-2011	
All Ecosystems	47,773	182,481	
Irrigated	38,655	64,312	
Non-Irrigated	9,118	118,169	

Growth (in %)	2000-2010	2010-2011
All Ecosystems	1.13	4.24
Irrigated	1.35	2.15
Non-Irrigated	0.66	9.07

Paddy Production, 2000-2011

■ Irrigated ■ Non-irrigated

GROWTH IN PRODUCTION

Growth (in mt/year)	2000-2010	2010-2011
All Ecosystems	428,236	911,743
Irrigated	314,394	366,472
Non-Irrigated	113,842	545,271

Growth (in %)	2000-2010	2010-2011	
All Ecosystems	2.96	5.78	
Irrigated	2.88	3.06	
Non-Irrigated	3.19	14.43	

