
Role of DUS test 2. Examination of DUS

Workflow of the DUS test

DUS test

Distinctness examination

- Selection of similar varieties
- Clearly distinguishing new variety

Requirement:

Article 7; 91 Act of the UPOV

The variety shall be deemed to be distinct if it is clearly distinguishable from any other variety whose existence is a matter of common knowledge at the time of the filing of the application.

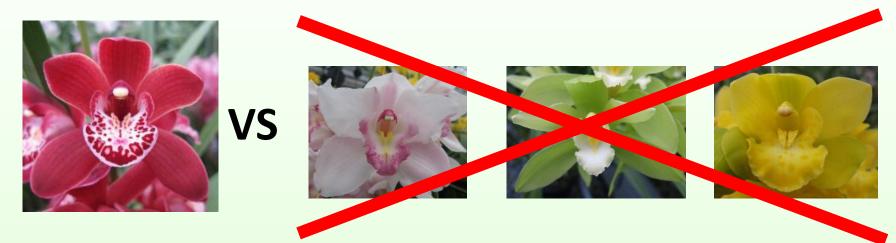
TG/1/3 5.3.3

- A variety may be considered to be clearly distinguishable if the difference in characteristics is:
- (a) consistent, and
- (b) clear.

clearly distinguishable => 1. Consistent 2. Clear

Clearly Distinguishable

from any other varieties ?

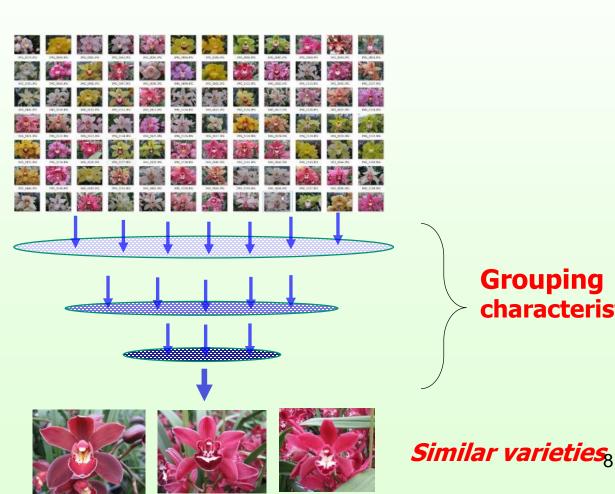

TG/1/3: 5.3.1.1 "it is necessary to examine distinctness in relation to all varieties of common knowledge. However.."

Compare Candidate variety VS Existing varieties6

Selection of Similar Varieties

Where a candidate variety is sufficiently different from particular group of varieties,

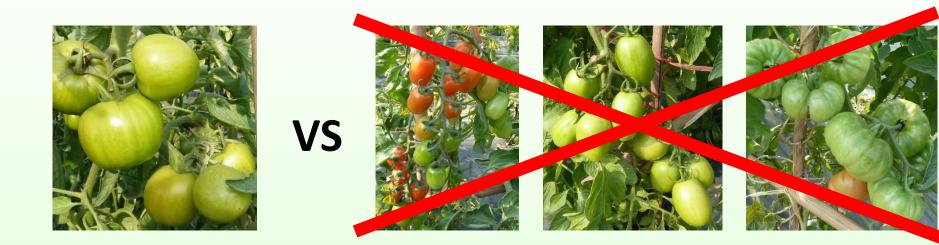
No need to compare the candidate variety with different group of varieties


How to select different group of varieties?

Selection of Similar Varieties

Selecting the similar varieties

Candidate varieties


Grouping characteristics

Grouping characteristics

Grouping characteristics: Cymbidium

- (a) Plant: size (char. 1)
- (b)Inflorescence: number of flowers (char. 20)
- (c) Peduncle: attitude (char. 24)
- (d)Flower: general impression of petals and sepals (char. 28)
- (e) Flower: length (char. 29)
- (f) Flower: width (char. 30)
- (g) Flowering time (char. 100)
- (h)Flower: predominant color (Technical Questionnaire 5.8)

Selection of Similar Varieties

No need to compare candidate variety with different group of varieties

How to select different group of varieties?

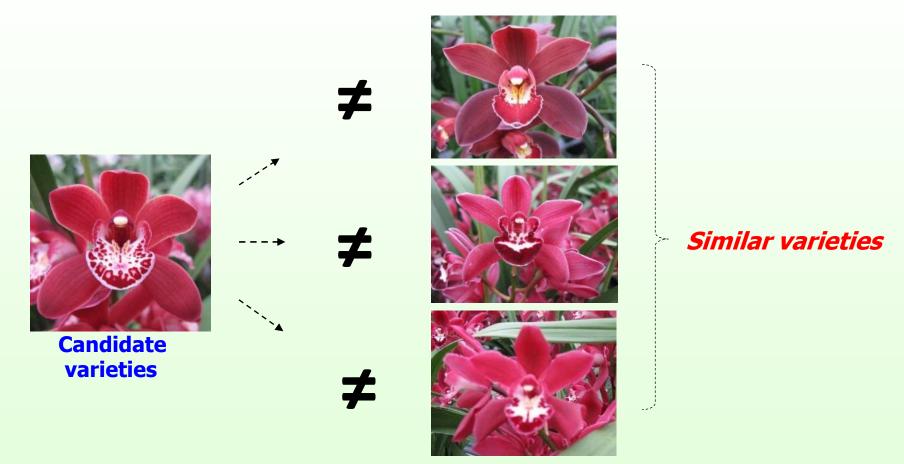
Grouping characteristics

Grouping characteristics: Tomato

- (a) Plant: growth type (characteristic 2: QL)
- (b) Leaf: type of blade (characteristic 10: QL)
- (c) Peduncle: abscission layer (characteristic 19:QL)
- (d) Fruit: green shoulder (before maturity) (characteristic 21:QL)
- (e) Fruit: size (characteristic 26:QN)
- (f) Fruit: shape in longitudinal section (characteristic 28:PQ)
- (g) Fruit: number of locules (characteristic 36:QN)
- (h) Fruit: color (at maturity) (characteristic 3:PQ)

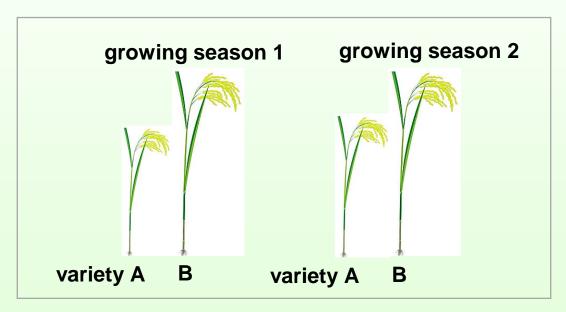
Example DB

Selection of Similar Varieties


No need to compare the candidate variety with different group of varieties

VS

Selection of Similar Varieties



the candidate variety is considered to be distinguished to all existing varieties

Clear difference

1.Consistent difference:

To ensure sufficient consistent is to examine the characteristics in at two independent growing cycles.

Differences have to occur in two growing cycles

Clear difference

2.Clear differences:

TG/1/3: 5.3.3.2

Determining whether a difference between two varieties is clear **depends on the type of expression of the characteristics**.

- **QL:** Qualitative
- **QN:** Quantitative
- **PQ: Pseudo-Qualitative**

Distinctness examination

Clear difference

TG/1/3: 5.3.3.2.1

Requires:

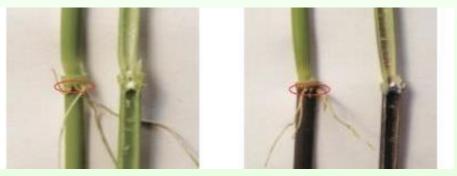
 the difference between two varieties may be considered clear if one or more characteristics have expressions that fall into two different states in the Test Guidelines

Different "states" can be considered to be Distinct

Clear difference

Different "states" can be Distinct

Fruit: green shoulder (before maturity)



Absent 1

Present 9

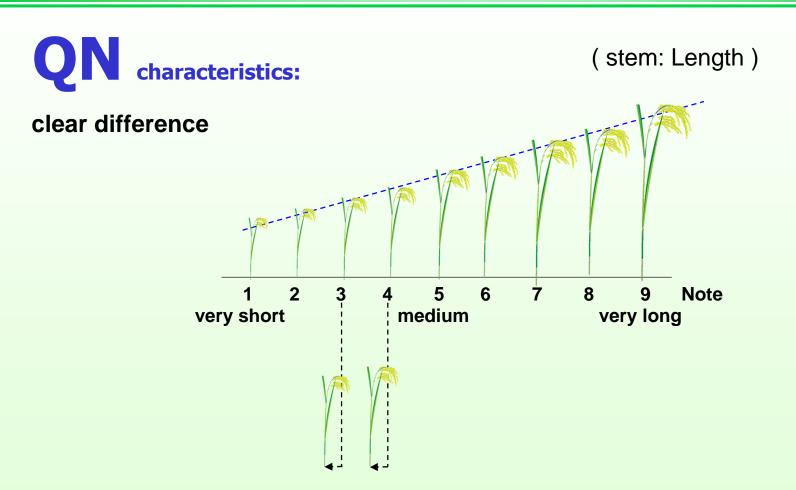
Stem: anthocyanin coloration of nodes

Absent 1

Present 9

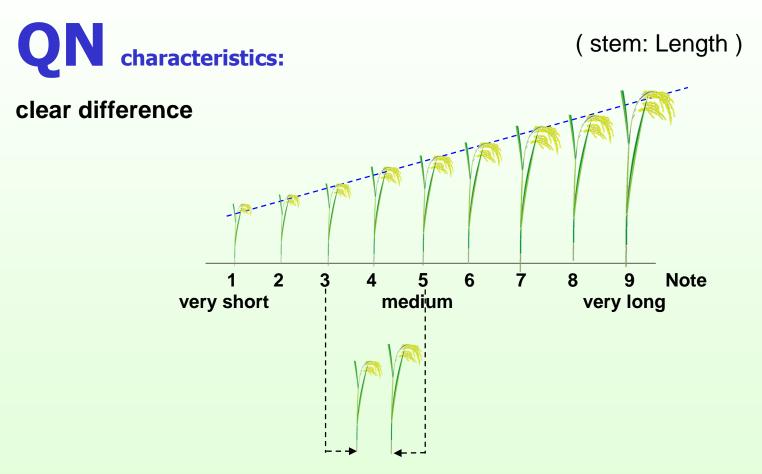
Distinctness examination

Clear difference



TG/1/3: 5.3.3.2.2

For QN, a difference of two Notes often represents a clear difference, but that is not an absolute standard for assessment of distinctness. Depending on factors, such as the testing place, the year, environmental variation or range of expression in the variety collection, a clear difference may be more or less than two Notes. Guidance is provided in document TGP/9, 'Examining Distinctness'."



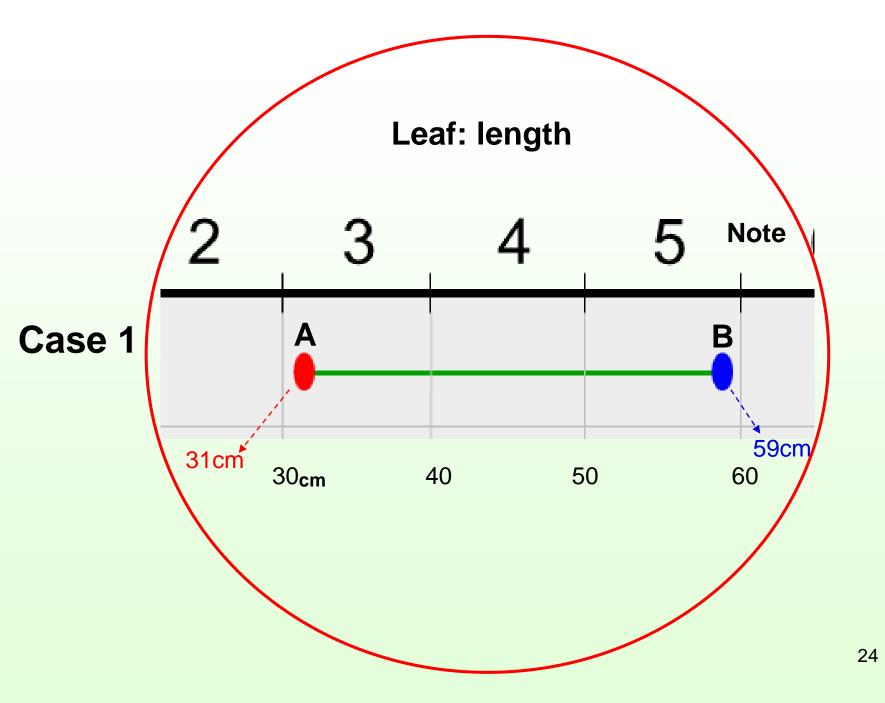
Clear difference

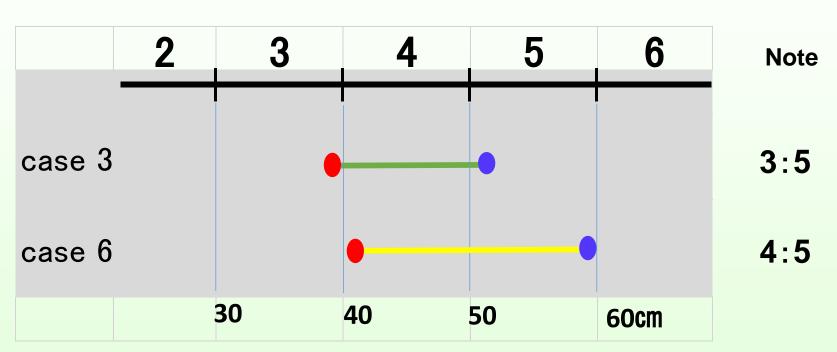
Note 3: 4 \rightarrow may NOT be clear difference

Clear difference

Note 3: 5 \rightarrow may be clear difference

Clear difference


"a difference of two Notes often represents a clear difference"


"Two Note" rule

QN chars. (Length, Height)

🕴 Variety A 🛛 🕴 Variety B

	1	2	3	4	5	6	7	8	9		
case 1			•		•					Note3:Note5	Different
case 2			•		•					3:5	Different
case 3			•		•					3:5	?
case 4				•	•					4 : 5	?
case 5				•	•					4 : 5	?
case 6				•	•					4 : 5	?

QN: Stem: Length

case 3 < case 6

"Two Notes" rule means at least <u>One note difference</u>

25

Verity: Combination of expression of characteristics

char No.	8	9	15	16	24	36	39	41
characterisitics	Tassel: time of anthesis	Tassel: anthocyanin coloration at base of glume	Ear: time of silk emergence	Ear: anthocyanin coloration of silk	Plant: length	Ear: type of grain	Ear: color of dorsal side of grain	Ear: anthocyanin coloration of glumes of cob
Candidate variety	5	5	5	5	5	1	4	1
existing variety 1	5	5	5	5	5	3	4	1
variety 2	5	3	5	5	5	1	4	1
variety 3	5	5	3	5	5	1	4	1
variety 4	5	5	5	5	7	1	4	1

New verity: new combination of expression of characteristics

Distinctness examination

Clear difference

TG/1/3: 5.3.3.2.3

- A different state in the Test Guidelines may not be sufficient to establish distinctness (see also section 5.5.2.3).
 However, in certain circumstances, varieties described by the same state of expression may be clearly distinguishable.
 - ✓ difficult to define a general rule on the difference in Notes to establish Distinctness
 - ✓ need to compare the state of expression directly side by side in the field

Clear difference

PQ: clear difference

2.oblate

3.circular

4.blong

5.cylindric 6.elliptic

7.cordate

8.ovate 9.obovate 10.pyriform 11.obcordate

Clear difference

Clear difference

	characteristics	Assessment
QL	 discontinuous states absent / present 	different states
QN	continuous stateslength, width	two notes rule
PQ	 more than one dimension shape, color 	A different state in the TGs may not be sufficient

Assessment of Distinctness

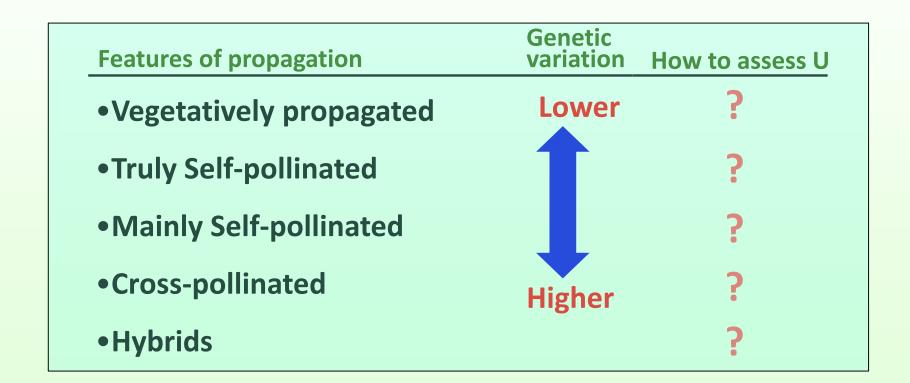
Method of propagation of the variety	QL	PQ	QN
Vegetatively propagated, self-pollinated	Notes(VG)	Notes(VG) Side-by-side(VG)	Notes(VG) Side-by-side(VG) Statistics(VS)
Cross-pollinated	Notes(VG) Statistics(VS*)	Notes(VG) Side-by-side(VG) Statistics(VS*)	Statistics(VS) Side-by-side(VG) Notes(VG)
Hybrid	Notes(VG) Statistics(VS*)	Notes(VG) Side-by-side(VG) Statistics(VS)	according to the type of hybrid

* Records of individual plants only necessary if segregation is to be recorded.

• The most common approach are listed first.

Uniformity examination

Features of propagation of the variety

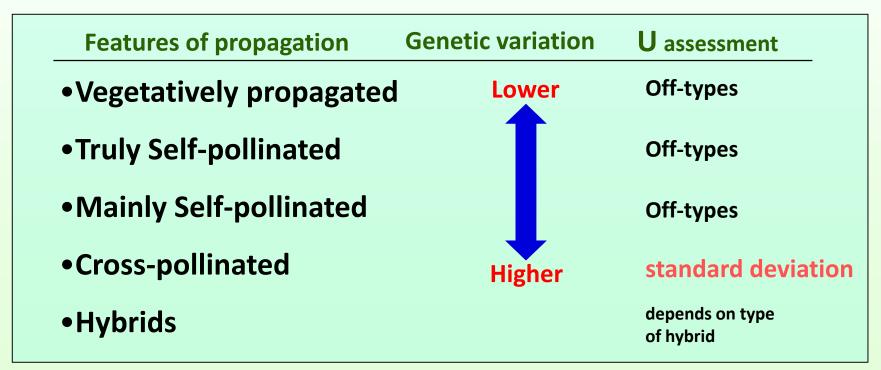

Requirement:

Article 8; 91 Act of the UPOV

The variety shall be deemed to be uniform if, <u>subject to the</u> variation that may be expected from the <u>particular features of</u> its propagation, it is sufficiently uniform in its relevant characteristics.

 ✓ level of uniformity required for the variety will be different

Features of propagation of the variety


Assessment of Uniformity

Method of propagation of the variety	QL	PQ	QN		
Vegetatively propagated	Off-types	Off-types	Off-types (Visual observation) Standard deviations (measurement)		
Self-pollinated	Off-types	Off-types	Off-types (Visual observation) Standard deviations (measurement)		
Cross-pollinated	Off-types	Off-types	Standard deviations		
Single hybrid (inbred parent lines)	Off-types	Off-types	Off-types (Visual observation) Standard deviations (measurement)		
Other hybrid	according to the type of hybrid				

- The most common approaches are listed first.

Methods for Examining Uniformity

- 1. Off-types approach
- 2. Standard deviation approach

1. Off-types approach

Where all the plants of a variety are very similar, for vegetatively propagate and self-pollinated varieties, Uniformity is assessed by the number of Off-types

How many off-types should we accept?

How many off-types should we accept?

According to the **size of the sample** examined, statistical tables give the maximum **number of off-types** tolerated in that given samples

e.g.: population standard = 1% and acceptance probability = 95%

Sample size	Number of off-types allowed
1-5	0
6-35	1
36-82	2
83-137	3
138-198	4
199-262	5

How many off-types should we accept?

Population standard

(Acceptable Number of off-types)

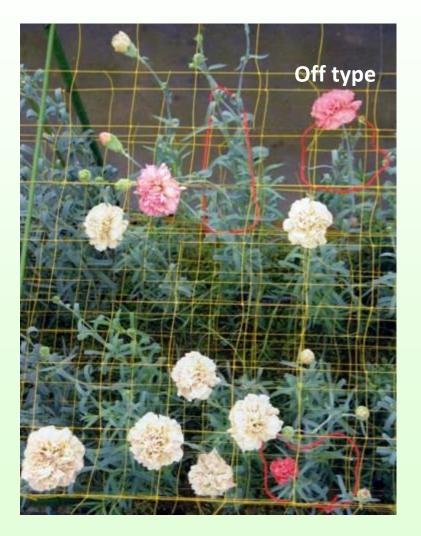
 Percentage of off types to be accepted if all individuals of the variety could be examined

Acceptance probability

 Probability of correctly accepting that a variety is uniform

species and genera	Assessment of uniformity
soya bean	a population standard (P.S.) of 0.5% with an acceptance probability(A.P) of at least 95% should be applied. In the case of a sample size of 300 plants, the maximum number of off-types allowed would be 4.
tomato	P.S. of 1% and A.P. of at least 95% should be applied. In the case of a sample size of 20 plants, 1 off-type is allowed.
chrysanthemum	P.S. of 1% and A.P. of at least 95 % should be applied. In the case of a sample size of 20 plants, 1 off-type is allowed.
apple	P.S. of 1% and A.P. of at least 95% should be applied.In the case of a sample size of 5 plants, no off-types are allowed.In the case of a sample size of 10 plants, 1 off-type is allowed.
banana	P.S. of 1% and A.P. of at least 95% should be applied. In the case of a sample size of 15 plants, 1 off-type is allowed.
tulip	P.S. of 1% and A.P. of at least 95 % should be applied. In the case of a sample size of 25 plants, 1 off-type is allowed.
sugarcane	P.S. of 1% and A.P. of at least 95% should be applied.In the case of a sample size of 6 culms 1 off-type is allowed.In the case of a sample size of 24 culms, 1 off-type is allowed.

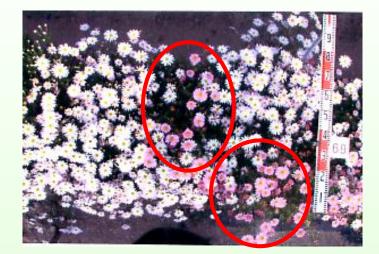
Acceptance probability

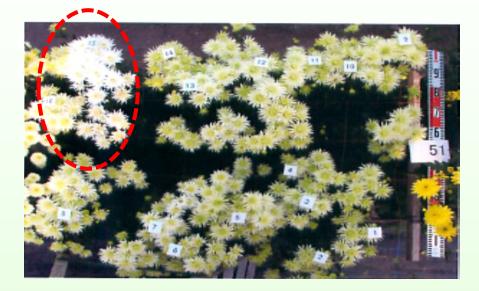

case:

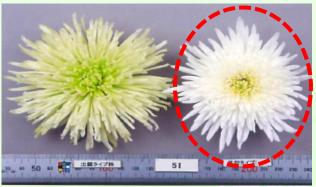
sample size ; 100 plants acceptance probability; 95%

Population standard								
Acceptance Probability 95 %	10%	5%	5%	2%	1%	0.5%	0.1%	
Allowed number of off-types	15	9	6	5	3	2	1	

PS, **AP** in each **UPOV TGs**


population standard	Acceptance probability	sample size	Number of off types	species			
0.1	95	1500	4	Rice			
0.1	95	2000	5	Durum wheat			
1	95	5	0	Imond, Blueberry, Persimmon, Avocado, coffee, fig, Dragon fruit, Mango			
1	95	6	1	Nerium, BirdCherry, Buddleja, Papaya			
1	95	7	1	Eucalyptus,Rubber			
1	95	8	1	Alstromeria, Hydrangea, Clematis, Rose of Sharon, Canna, Hebe			
1	95	9	1	Phalaenopsis, Oncidium			
1	95	10	1	Bougainvillea, Camellia, Pineapple, Dendrobium, TeaTree, Brachyscome, Poinsetia			
1	95	12	1	ahlia			
1	95	15	1	ZonalPelargonium, Banana, Lobelia, Osteospermum, Sutera			
1	95	20	1	Yam, Peppermint, Pumpkin, Tomato, Lily, Melon, Gladiolus, Chrysanthemum			
1	95	24	1	ugarcane			
1	95	25	1	ulip			
1	95	40	2	bitter gourd, asparagus, Brussels sprout, cucumber, Petunia, Antirrhinum, Onion			
1	95	50	2	Amaranth, Sweet potato, Sesame			
1	95	60	2	cornsalad, chinese Cabbage, broccoli, Calabres sprouting, chimes Chive, Shiitake			
1	95	90	3	Oyster Mushroom			
1	95	100	3	Chick Pea, Lentil			
2	95	20	2	Elatior Begonia, Kalanchoe, Chili, Watermelon,			
2	95	200	7	Beetroot, Carrot,Leek, Radish, Black Radish			
3	95	40	3	Maize			
5	95	40	4	Artichoke, Cardoon			
Hybrids:2 inbred:2	Hybrids:95 inbred:95	Hybrids:100 inbred:200,30	Hybrids:5 inbred:7,2	Parsnip			
Hybrids:2 inbred:3	Hybrids:95 inbred:95	Hybrids:100 inbred:100	Hybrids:5	Spinach,			
inbred:1 (s)cross:3	inbred:95 (s)cross:95	inbred:60 (s)cross:60	inbred:2 (s) cross:4	Cauliflower			




Off typ<u>43</u>

TG/1/3 6.4.1.1 Determination of Off-Types by Visual Assessment

A plant is to be considered an off-type if it can be *clearly distinguished from the variety* in the expression of any characteristic of the whole or part of the plant that is used in the testing of distinctness, taking into consideration the particular features of its propagation.

clearly distinguished from the variety = same criteria as for Distinctness

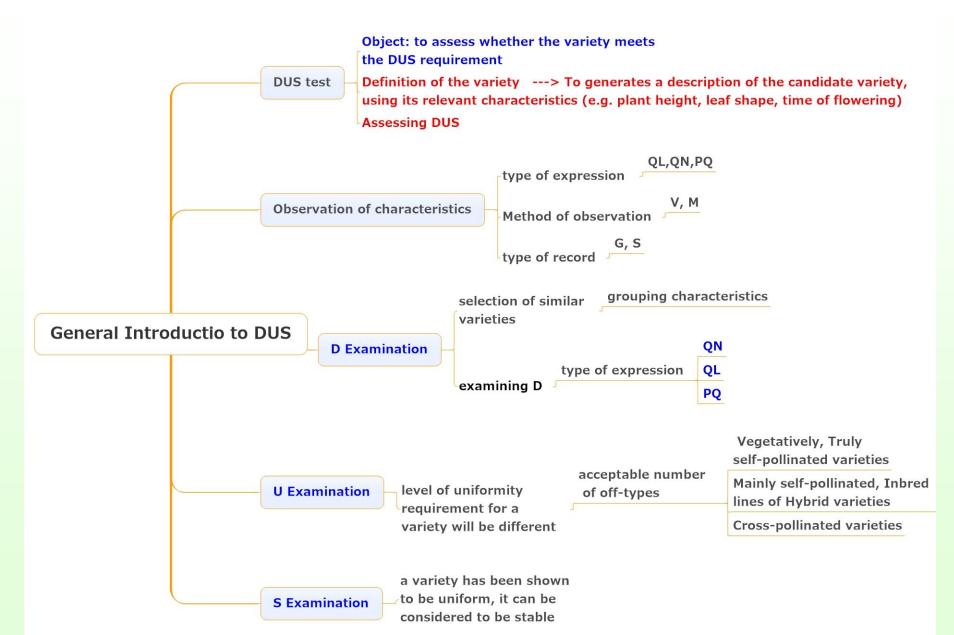
Stability examination

Stability

Requirement:

Article 9; 91 Act of the UPOV

- The variety shall be deemed to be stable if its relevant characteristics remain unchanged after repeated propagation or, in the case of a particular cycle of propagation, at the end of each such cycle.
 - In practice, it is not usual to perform tests of stability that produce results as certain as those of the testing of distinctness and uniformity.
 - However, for many types of variety, when a variety has been shown to be uniform, it can also be considered to be stable


Stability

- Where appropriate, or in cases of doubt, stability may be tested, either by growing a further generation, or by testing a new seed or plant stock to ensure that it exhibits the same characteristics as those shown by the previous material supplied.
- Stability needs appropriate maintenance of the variety by the breeder continuously.

relevant characteristics:

The relevant characteristics include at least all characteristics used for the examination of DUS or included in the variety description established at the date of grant of protection of that variety.

Summary

Thank you for your attention

MIZUNO Tadao tadao.mizuno@gmail.20m

Final Goal

We can carry out DUS test for Tomato

Step

- 1. To understand basic principles of examination of DUS based on UPOV system
- 2. To understand deeply how to assess D,U,S for Tomato by practical work
- 3. To understand for making a DUS test report