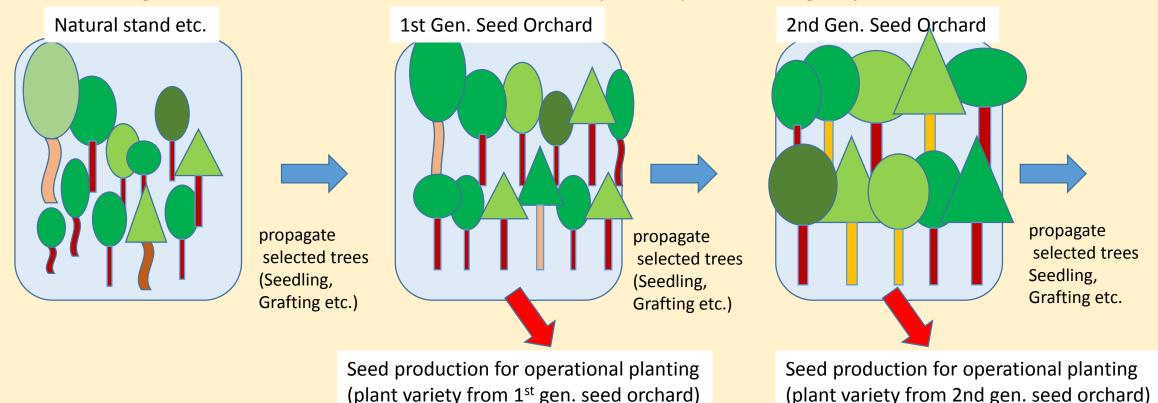
Breeding of Acacia spp. for timber products and

Plant variety registration

2015. September

Osamu CHIGIRA


Forest Tree Breeding Center
Forest and Forest Products Research Institute
JAPAN

Contents of Lecture

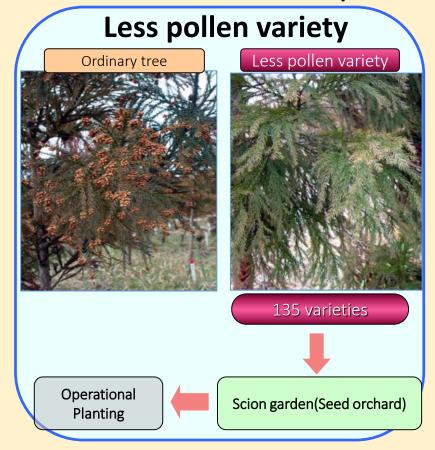
- Distinctive features of breeding for timber products
 - Recurrent Mass selection based on population genetics
 - Example of Acacia spp. Breeding by Mass selection
 - Clonal cultivar of Japan cedar (*Cryptomeria japonica*)
- Examples of Clonal forest by genetically improved stock (Hybrid Acacia)
 - Important trait for interspecific hybrid of Acacia and their parent species
 - Naturally occur interspecific hybrid of Acacia
 - Breeding of interspecific hybrid Acacia by Artificial crossing
- Plant variety Registration of hybrid Acacia clones in Sabah Malaysia
 - Background
 - Important characteristic to distinct clone varieties each other

Distinctive features of breeding for timber products

- Recurrent Mass selection based on population genetics (low heritability)
 - Majority of timber product tree are allogamous species
 - higher yielding (quantitative trait), Better quality, better adapted is objective of breeding
- Prefer genetic variation rather than uniformity! except breeding objective

Difficult to distinct from another population (variety of geographical features, large scale, long life crop)

Distinctive features of breeding for timber products


Example of Acacia spp. Breeding by Mass selection

- Seed were corrected from superior tree in natural stand
- Breeding population is consist of several sub-populations
- Each sub-pop. Consist of 30 to 60 families (strain)
- Each fam. Planted in 4 tree Line plot with 6 to 10 replication
- After felling, Best tree in each plot were left for operational seed production
- For most families, Best tree in all replication were selected to collect seed for next generation. Culling inferior fam. At the same time.

Distinctive features of breeding for timber products

• Clonal cultivar of Japan cedar (*Cryptomeria japonica*)

PICK BEST TREES UP AMONG BREEDING POPULATION
AND DEVELOP
NEW PLANT VARAIETY AFTER CLONAL TEST

Examples of Clonal forest by genetically improved stock (Hybrid Acacia)

- Important trait for interspecific hybrid Acacia and their parent species
- Hybrid Acacia is Reciprocal hybrids between A.auricuriformis and A. mangium

•	•	· ·
Features	A. auriculiformis	A. mangium
Growth	Moderate to fast growth	Fast growth
Adaptation to soil	Tolerant to highly acidic and alkaline soils	Good in Acidic to weekly acidic soils
Drought tolerant	4 to 6 month	3 to 4 month
Pest and Disease resistance	pests and diseases damage is minor. root rot damage in India (Ganoderma lucidum)	susceptible to hart rot, root rot and die-back
Stem form	crooked	straight
Wood density	Higher than mangium	
Strength of wood	Stronger than mangium	
Productivity of rooted cutting	Well	Well until 2-3 years

Breeding objective of Hybrid Acacia

- Fast growing
- Adaptation
- Disease resistance
- Straight stem form
- Wood density
- Wood color
- Strength of wood
- High productivity of scion for rooted cutting
- High success rate of rooted cutting

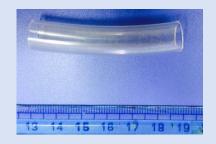
Legend; table above are created based upon from "characteristic of tropical tree species for reforestation 1 &2", N. Mori etal, 1996 & 1997

- Naturally occur interspecific hybrid Acacia in Sabah, Malaysia
- Natural interspecific hybrid discovered at A. mangium stand in Ulu-Kukut, Saba in 1970, among Mission Beach provenance, Queensland.
- 40 plus trees were selected at the stand.
- 30 plus trees are planted in scion garden ready to operational planting
- Clone trial was established at Karamatoi Saba in 2003 By private company

N.B.; A part of Information above are summarized from "Seed sources establishment and tree improvement project, Sabah, Malaysia", 1982, FAO/UNDP-MAL/78/009 consul-tant's report no 8. FAO, Rome.

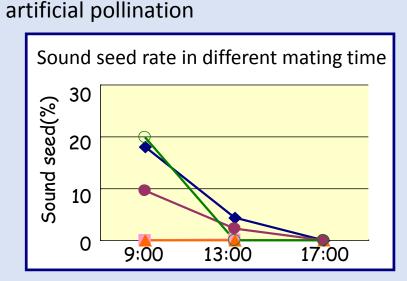
Naturally occur interspecific hybrid Acacia in Vietnam

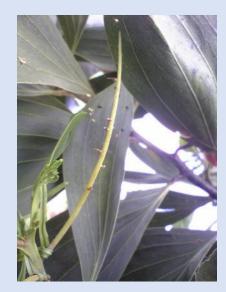
- Occasional hybrid individuals identified in young
 A. mangium plantations in Vietnam in 1992
- Six clones from clonal tests in 1990s, were approved by MARD(Ministry of Agriculture and Rural Development) for commercial use in the year 2000
- Hybrid Acacia plantations was estimated at 232,000 ha in Vietnam in 2009

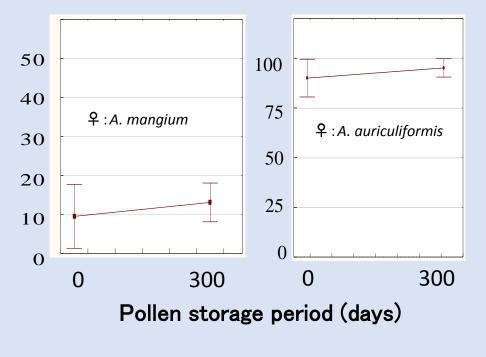

N.B.; Information above are summarized from "Growth and wood density of acacia hybrid clones at three locations in Vietnar Le Dinh Kha etal, 2012, New Forests 43:13-29

Breeding of interspecific hybrid Acacia by Artificial crossing

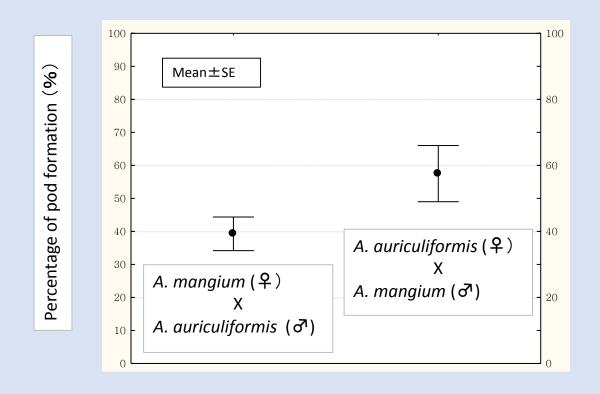
Development of artificial crossing technique

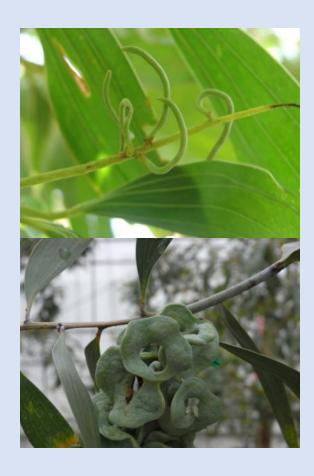

Pollen collection




Pollen storage at -20C

Check pollen viability





Seed pod formation rate In artificial cross (%)

- Breeding of interspecific hybrid Acacia by Artificial crossing
- Development of artificial crossing technique

- Background
 - SAFODA (Sabah Forest Development Authority) had discovered Natural interspecific hybrid A. mangium stand in Ulu-Kukut, Sabah in 1970
 - 30 clones out of 40 plus trees are conserved in scion garden
 - Clone trials of these clone were established in Sabah in 2003 By a private company
 - 19 better performed clone were registered as plant variety of Malaysia by SAFODA in cooperation with the private company and FTBC

N.B.; A part of Information above are summarized from "Seed sources establishment and tree improvement project, Sabah, Malaysia", 1982, FAO/UNDP-MAL/78/009 consul-tant's report no 8. FAO, Rome.

- Important characteristic to distinct clone varieties each other
 - 23 characteristic could be evaluated out of 40 characteristics
 - "Color of bark" were gave up

Category	Characteristic						
General appearance	Shape of tree crown	Color of tree crown	Geotropism of branches	D.B.H.			
Trunk	Trunk form	Trunk taper	Shape of stem cross section				
Wood	Color of heart- wood	Color of sap- wood	Specific gravity				
Bark	Color of bark	Pattern of tree bark cracks	Thickness of bark				
Branch	Size of branch	Length of branch	Angle of branch	Density of branch			
shoot	Shape of cross section	Edge of cross section					
Phyllode	Length of phyllode	Width of phyllode	Bend of phyllode	Shape of phyllod base	Shape of phyllod tip	fork position of vein	Color of petiole
Pod	Shape ofcross section	length of pod	Width of pod	Crookness of pod	Length of stalk	Color of stalk	
Seed	Length of ovule stalk	Color of ovule stalk	Color of seed	Color of flower	Length of inflorescence		
Fruiting		Age start fruting					
Rooting	Rooting						

- Important characteristic to distinct clone varieties each other
 - Some characteristic seems difficult to judge subjectively
 - Coincidence ratio between evaluator was quite low in "shape of crown form"

Characteristic		Code correspond to each Characteristic			cteristics	combination of evaluator			
		1	2	3	4	A-B	A-C	B-C	
General appearance	Shape of tree crown	conical	parabolical	half globose	umbrella	35	43	45	
Trunk	Trunk form	straight	medium	curved		75	80	69	
	Shape of stem cross section	circular	elliptical	irregularcir cular		69	75	65	
Bark	Pattern of tree bark cracks	smooth	mesh	vertical crack	others	100	100	100	
Phyllode	Bend of phyllod	less bended	medium	well bended		83			
	Shape of phyllod tip	acuminate	acute	obtuse		90			
	fork position of vein	base	medium	apart from base		68			

Note; 51 trees were observed as sample

- Important characteristic to distinct clone varieties each other
 - Data analyzed to estimate repeatability for Part of trait

Category	Characteristic	Repeatability	
	Shape of tree crown	0.00	
General appearance	Color of tree crown	0.07	
	D.B.H.	0.30	
Turnle	Trunk form	0.32	
Trunk	Shape of stem cross section	-0.07	
Bark	Pattern of tree bark cracks	0.12	
Duanak	Angle of branch	0.08	
Branch	Density of branch	-0.04	
	Length/Width of phyllode	0.41	
	Bend of phyllode	0.34	
Phyllode	Shape of phyllod base	0.56	
	Shape of phyllod tip	0.22	
	fork position of vein	0.16	

Note; 51 trees were observed as sample 5 phyllode from each trees were observed.

Phyllode of A. mangium(above) and A. auriculiformis(below) Continuous variation were observed in Phyllode of Hybrid

- Important characteristic to distinct clone varieties each other
 - 23 characteristic could be evaluated out of 40 characteristics
 - 7 characteristic is not effective to distinct varieties

Category	Characteristic							
General appearance	Shape of tree crown	Color of tree crewn	Geotropism of branches	D.B.H.				
Trunk	Trunk form	Trunk taper	Shape of stem cross section					
Wood	Color of heart- wood	Color of sap- wood	Specific gravity					
Bark	Color of bark	Pattern of tree bark cracks	Thickness of bark					
Branch	Size of branch	Length of branch	Angle of branch	Density of branch				
shoot	Shape of cross section	Edge of cross section						
Phyllode	Length of phyllode	Width of phyllode	Bend of phyllode		Shape of phyllod tip	fork position of vein	Color of petiole	
Pod	Shape ofcross section	length of pod	Width of pod	Crookness of pod	Length of stalk	Color of stalk		
Seed	Length of ovule stalk	Color of ovule stalk	Color of seed	Color of flower	Length of inflorescence			
Fruiting	quantity of fruit	Age start fruting						
Rooting	Rooting							